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Summary

In this paper, the author presents a cosmological model capable of explaining the
following fundamental physical phenomena and properties of spacetime:

1. Three−dimensionality of space
2. Curvature of spacetime
3. Particle/Wave dualism
4. Relationship between electromagnetism and gravitation
5. Quarks, subquarks and their structure
6. Properties of quanta (especially of those called protons, elektrons and neutrinos)
7. Asymmetry between matter and antimatter in the universe
8. Expansion of the universe − why does that happen?
9. Significance of the so−called „Big Cosmic Numbers“
10.Relationship between smallest and biggest possible error of distance measurement
11.The universe − how big is it and its mass?
12.Dependency between the Sommerfeld Fine Structure Constant and the ratio of proton

to electron mass (they’re inversely proportional)
13.Dark matter − what is it?

And the universal validity of Albert Einstein’s theory of relativity5 can especially be shown
for the very beginning of cosmic expansion.

The model handles quanta as sets in the sense of set theory and describes the universe
as a subset of the power set of those sets, depending on whatever quantum is chosen as
a reference or test−particle in order to find out how the remaining world acts on it.
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Introduction

Today’s cosmology so far didn’t give satisfactory answers to some questions already
discussed for a long time which are the cause for many speculations up to the present,
and the author’s opinion is that until now, nobody really tackled those questions. The
reason for this might be that in the first place, cosmology is seen as a playground for
speculative physics rather than as a promising field of research, and, for instance, not
many physicists do believe that cosmology could provide solutions to the big riddles of
fundamental physics; for example, think of the considerable amount of questions
concerning an unified field theory. Eminent cosmologists like Eddington or Dirac have
dealt with interesting topics like the big cosmic numbers, and in consequence they
presented good intellectual approaches. Especially the former has produced a notable
body of thought with his „standard uranoid“, which will be discussed later − the model
presented here is mainly based on Eddington’s work.

If the reader dedicates himself to cosmology, philosophy surely provides appropriate
means to deal with this subject. The author states that already for a long time, natural
sciences didn’t badly worry about taking philosophical aspects into closer consideration,
and it surely cannot be negated that nowadays, philosophy is suffering a phase of
stagnation. It would be nice if this paper could contribute a significant share to change
that.

Back to Eddington: In his model, he assumes that space in our universe is curved and
therefore finite. He explains that in such an universe the biggest possible error of linear
measurements has to be the radius of curvature of spherical space. But there also has to
be a lower limit to the precision of such measurements. This is a fact simply because the
only way whereby one can measure the distance between to adjacent points is by means
of electromagnetic waves. Their wavelength, which as a basic principle has to be bigger
than zero (because a wavelength with the value 0 would correspond to an infinite energy
E, according to the equation E = h · c  / λ ; h is Planck’s constant, c the light velocity in
empty space and λ the wavelength of the radiation used), defines in a specific way the
error of distance measurement; in other words, it depends on the wavelength of the
radiation one uses for this purpose. And spacial localisation is only possible by means of
distance measurement. Because E must have a finite value (after all, Eddington assumes
that the universe is finite), λ cannot underrun a smallest possible extremal value, and that
means that a finite precision of linear measurements cannot be exceeded. So, „distance“
is a concept that looses every sense if a specific boundary is transgressed. Let σ be this
threshold value of measurement precision.
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Eddington now considers the relationship between the curvature of space and the number
of elementary particles in the universe (mostly protons and electrons, if what is called
"dark matter" is neglected, which wasn’t known by Eddington during his lifetime, and if one
also neglects particles which have such a small mass so that even their enormous
number does not contribute a noteworthy part to the total mass of the universe, for
example neutrinos). To this purpose he idealises the universe; he equates it with the
already mentioned "standard uranoid". That is a model of the world in which uniformly
distributed particles exist (e.g. protons and electrons) whose temperature is 0° Kelvin;
Eddington implies that all particles are at rest relative to each other.

In such an uranoid there is a parameter for the magnitude of overall space bending; this is
the already mentioned radius of curvature of spherical space, which shall be called R. In
the actual world it would be more realistic to call it an average universal radius of
curvature. And now Eddington shows by considering a volume extensive enough to
include a large number of particles in a still larger assembly of N particles in the uranoid
as a background environment, that the curvature of space in which the particles are
enbedded is simply a consequence of the natural limit of the precision of linear
measurements; more exactly:

2 · σ =  R / N½ ; ( 1 )

or
   N½  =  Run : ( 2 · π · σ ) ; ( 2 )

where Run is the distance between an observer and the opposite pole on the uranoid,
which is π times R.

And in fact there is an average quantitative match in compliance with equation (2); it is
known for quite some time that N is approximately equal to 1080. If one sets Run equal to
more or less 13.8·109 lightyears which is a value approved by modern physics14, and if σ
equates the so−called classical electron radius, then the value of 1040 is found on the left
side of (2) and approximately 1039 on its right.

As is generally known, an electron bears a so−called „elementary“ electric charge.
Consider now a sphere with radius r which has this static electric charge e*, then its
electrostatic energy is equal to e*²/ r . If the radius of this sphere is zero, this energy
reaches an infinite value. It is well known that the energy of an electron is finite, even quite
small, so the radius of this particle has to be bigger than zero. If one assumes that the
whole mass of the electron is of electromagnetic origin, one can show that its radius is

   re   =   e*²/ ( 2 me · c²) . ( 3 )

Now, in hydrogen atoms, it’s a fact that the proportion between electromagnetic attraction
and gravitational pull between proton and electron is also something around 1039.
Eddington deduces this ratio as well.
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He sets the uranoid equal to a positively curved Einstein universe. If Mun is its mass and G
the gravitational constant, it can be shown that the following equation applies:

 Mun  · G  =  π · R  ; ( 4 )
    c²             2

and because there are as many electrons as there are protons in the universe, the
number of protons equals N / 2 . The mass of the electrons can be neglected here,
because it is about 1,840 times smaller than that of the protons. Therefore, Mun = ½ N mp ,
where mp is the mass of a single proton. Hence, with (4) one gets

          mp G / ( π · c²)  =  R / N ; ( 5 )

with equation (1):

         mp G / ( π · c² )  =   2 · σ · N½ / N ;
converted

N½ /  π  =   2 · σ · c² /  mp G ; ( 6 )
with equation (3) this is
 N½ /  π  =   e*² / mempG ; ( 7 )

if it is assumed that the distance re is the smallest seperation of two points which can be
measured by electromagnetic means, it therefore has to be equal to σ. If the root of N (as
mentioned above, N is approximately equal to 1080) is extracted and the solution is divided
by the number π , the result is a number with the magnitude order of 1039, and that is of
the same scale as the experimentally determined ratio of electromagnetic to gravitational
force between proton and electron in the hydrogen atom1.

The author fosters his conviction that Eddington’s approach is correct, and he intends to
create the prerequisites for an adequate proof.

In this paper the initial assumption  is that the world perceived by the human mind is in
quintessence solely its effect on it, exactly as it was stated by the french philosopher
Jean−Paul Sartre in his work „Being and Nothingness“2:  The appearance becomes full
positivity; its essence is an ’appearing’, which is [not] [...] opposed to being, but on the
contrary is the measure of it. For the being of an existent is exactly what it appears.“

Furthermore, as a second assumption , the author postulates that perception depends
on the perceiving observer, who from now on shall mostly be called a „subject“, in the
sense that his own structure is only allowing perceptions whose structure is corresponding
exactly to his own specific structure − what filters out everything not congruent to the
structure of the subject. At last, such an approach is the result of a well known thought
experiment: „Schrödinger’s Cat“3.

In this experimental setup a cat is fixated in such a way that it would inevitably be killed by
the bullet of a gun, which can be triggered by an electronic device. A single photon hitting
an appropriate sensor activates this device and thereby causes the deadly shot. This
machinery is mounted behind a half−transparent mirror, so that half of the light is going 

4



through it and the other half is reflected. And now, this whole setup is placed inside a box
concealing everything happening inside, so no information whatsoever can be gathered
from the outside concerning the question if the cat stays alive or already got shot. There’s
only one hole allowing a single photon to enter the box and to hit the half−transparent
mirror inside. What outcome this experiment could possibly have?

At first glance one is apparently confronted with to different scenarios: Either, nothing is
happening, because the photon is reflected by the mirror, or, the photon passes through
it, hits the sensor and in consequence causes the deadly shot. Before the box is opened,
nobody can decide if the cat is alive or already dead, but there can be no doubt about the
fact that one of both results has to be true, regardless if somebody is looking into the box
or not.

But Schrödinger presents a surprisingly different explanation. As soon as the photon
reaches the mirror, as a matter of principle, no statement about whether the photon
crosses the mirror or not can be made. It may only be stated that the photon is potentially
crossing the mirror and  that it is potentially reflected. In the first case the cat is dead, in
the second it is alive; because both states are „potentially“ co−existing, Schrödinger
insists that in accordance with orthodox quantum theory the cat is de facto potentially
dead and as well potentially alive. But it is only by opening the box that one of both states
is realised, and the person who opens the box, i.e. the subject is responsible for the fact
that the cat may be dead, simply for the reason this act is realising one of both former
potentially co−existent states. The gist is the conclusion that the observed event depends
on the observer, who is called „subject“ here; it is simply becoming a reality because he
observes it!

If in compliance to the first assumption each observed event, which from now on shall be
called an „object“, is exactly its effect on a subject, not more and not less, and
furthermore, in compliance to the second assumption, an event can only be observed by a
subject structured in such a way that parts of his consistence are congruent to this object,
a quasi solipsistic conclusion can be drawn, that the reality of objects does only exist in
the subject. Quite simply, all observed objects are contained in the subject observing
them, what causes the author to utter the mathematical statement that the subject is a set
whose elements are objects.

To be thorough, an observation is intrinsically tied to a „non−observation“, which of course
is itself also an observation. This is trivial; in Boolean algebra the observation corresponds
to the statement „true“, the non−observation to „false“, in digital technology to the states
„on“ respectively „off“.

Subsequently the author uses the expressions „positive“ and „negative“ perception, the
latter replacing the term „non−observation“.

So far the expressions „observation“ and „object“ have been used. According to the first
assumption the object cannot be anything else than its perception by the subject.
Therefore the term „observation“ will be discarded; from now on, in the context of this
paper, the terms „positive“ and „negative objects“ will be used in the first place. Thus, the
subject is a set whose elements are positive and negative objects.
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By now the reader will surely realise that neither subject nor object is explained by
something more fundamental, it’s rather their relationship that is defined here.

At this point, the question whether every potentially existent set in the universe is also an
element of the subject shall be answered. This results in asking if the set of all sets exists.
And this question has already been replied by Bertrand Russell quite a while ago; the
statement, something like a set of all sets can exist, winds up in contradictions (Russell’s
antinomy)4.

Thus, all elements of the subject are objects which are not subsets of the subject. In other
words, the subsets of the subject are not elements of the subject. So, the subject cannot
be the set of its subsets. It can be put as follows: Because of the axiom of power set the
set of the subject’s subsets is the power set, the claim that the subject exists results in
claiming that there are other sets in addition to the subject (in a manner of speaking,
„outside“ the subject), and this consideration forcibly leads to the deduction that the
subject isn’t the only existent set − an assertion contradicting a solipsistic perspective.

Based on the assumptions mentioned above the author builds a model of the world which
describes a universe (more accurately, an „uranoid“) which contains the utmost minimum
of quanta (an amount of them just sufficient to allow a description of fundamental physical
phenomena  − see chapter I.) and at the same time has the smallest possible extent, in
order to show subsequently that this cosmological model can accurately describe the so
called „Big Bang“, i.e. the starting point of the expansion of the universe as one can see it
nowadays. The author thinks that the present−day magnitude of the Sommerfeld fine−
structure constant α (something around 7.297352568 ·10−3), which in this model isn’t
really a constant, can be deduced from the initial conditions of this universal expansion.
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Chapter I.

In accordance with the assumptions in the introduction to this paper the world is a set
defined by elements which are subsets of the subject, and therefore at least a subset of
the power set of the subject.

Accordingly, the set of all protons, antiprotons, electrons and positrons existing in the
universe is at least a subset of the power set of a test particle, if this itself is a subject,
hence a set and thus defined solely by its elements. These elements have the following
physical properties:
1. mass / energy;
2. velocity;
3. electric charge.
They are identical to each other, but have to carry either a positive or a negative electric
charge. The directions towards they move may also differ, but not the value of their
velocity vectors. What’s more, nothing about their „inner life“ may possibly be stated,
that’s why the author handles them as Black Holes.

Now, the author wants to bring forward a third assumption : For each element of the test
particle (in this model, each of those elements carries an electric charge by definition)
there is exactly one element with the opposite electric charge somewhere in the universe,
i.e. in a subset of the power set of the test particle. For example, let a test particle be a set
of two elements with a negative and one element with a positive electric charge; then
there has to exist exactly one further element of the test particle’s power set being a set
with exactly one element bearing a positive electric charge. This conforms to the principle
found in the contemporary universe, that quanta are always created pairwise. And if
someone asks himself the question, how the universal expansion observed by
astronomers nowadays might have begun once, this obviously leads to the postulation of
a model with the smallest possible extension of spacetime − and also the smallest
possible quantity of particles in it. This state is defined by a quantum number which the
author calls „image number“ M; at the very beginning of spacetime it is equal to 1. As time
goes by, M is getting bigger and bigger. The way of its growth will be discussed later on.

How many particles, i.e. elements of the test particle must at least exist in order to be able
to realise the properties 1.−3.? In order to do that, one needs

A. linear movement (translation) and
B. rotation

to be definable. Moreover,

C. charge equalisation

has to be possible.

In order to find out how many particles have to exist in a smallest possible universe, a
closer examination of the following cases will help:
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First case: If M =1, exactly one particle exists, the only element of the test 
set. Because there’s no other particle, no charge equalisation is 
possible. What’s more, translation and rotation cannot be defined 
here; in relation to what frame of reference the element of the test set 
could possibly move? A. and B. are not definable, C. is impossible.

Second case: Two particles exist for M =1. In this case, translative movement can
be defined (particle 1 can move in relation to particle 2), but not
rotation; one would need a third particle as centre of reference in
order to define rotational movement. But charge equalisation is 
possible.

Third case: Three particles exist for M =1. Here, translation and rotation are 
definable. Charge equalisation is impossible.

Fourth case: Four particles exist for M =1. This is the first of the four cases allowing
to define A., B. and making the charge equalisation C. possible, thus 
giving sense to the properties 1.−3.; if one assumes three particles as 
elements of the test set, and if they do not alltogether bear electric 
charges having the same algebraic sign, one of them must also be an 
element of yet another element of the power set of the test particle. If 
for example two elements of the test set should bear a positive 
electric charge and the third would be negatively charged, the sole 
element of the second element of the power set of the test particle 
would have to bear a negative charge, because otherwise there would
be no charge equalisation. Thus, for each particle, i.e. element of the 
existing elements of the power set of the test particle there exists an 
anti−particle with the opposite electric charge as an element of one of 
those elements of said power set, thus realising charge equalisation.

Fig. 1: Lower−dimensional representation of the universe at M =1. The right angles
            between the connecting lines to the electron are valid in an universe with a positive
            curvature; in threedimensional, unbent space these angles would amount to 60°
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Therefore, from now on, it is assumed that the fourth case describes the situation at
M =1 (see also fig. 1 and 2). In the observable universe protons and electrons seem to be
the majority;  because of this fact it is reasonable to assume that at M =1 the test particle
is a primordial proton with a positive total charge. Then, aside of the proton which is
defined by two positively and one negatively charged elements, another element of the
power set of the test particle exists, and that one is defined by a single element bearing a
negative charge, i.e. the electron.

To determine the properties 1.−3. for M =1, the energy theorem will be starting point of the
author’s calculations. The following equation applies here:

   Ee1 = Ee1(ve1=0) + Etot1(e−) ; ( 8 )

where Ee1 is the energy corresponding to the electron’s mass acting on a proton, which is
the test particle (= test set) here. Ee1(ve1=0) is the rest energy and Etot1(e−) the total energy
(i.e. the sum of potential and kinetic energy) of the electron. The elements of the test set
have each and all the same properties, left aside the algebraic sign of their electric charge
and the direction of their velocity vectors, as already mentioned above. Therefore the
following equation applies to the energies of the elements of the test set:

E1(d) = E1(u1) = E1(u2) ; ( 9 )

where E1(d) is the energy of the element with a negative electric charge, E1(u1) the energy
of the first positively charged element and E1(u2) that of the second.

Fig. 2: The above illustration of a 3−sphere is supposed to visualise how the three quarks
       and the one electron are distributed in the universe at M =1. Aside from the fact one can
       arrange the three points (A, B and C) in a way so that their radii of curvature are all
       standing vertically on each other, the homologous situation already depicted in fig. 1 is
       realised here (quarks and electron reside in the 3−surface of a 4−sphere, if the potential
       wells caused by their masses are neglected). The distances A−B, A−C and B−C are identical
       to each other and equivalent to half the distance between the poles of the sphere
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At M =1 the electron is defined by one single element, i.e. the only element of the test set
bearing a negative electric charge, that’s why the following equation applies:

    Ee1 = E1(d) ; (10 )

and now, already well known to good ole Niels Bohr, the electron’s total energy is:

      Etot1(e−) = Ekin1(e−) + Epot1(e−) ; ( 11 )

where Ekin1(e−) is the kinetic and Epot1(e−) the potential energy of the electron. If c is the
velocity of light in vacuum, the relativistic equation5 for the kinetic energy is:

       Ekin1(e−) = Ee1(ve1=0) · [(1−(ve1² / c²))−½
− 1]; ( 12 )

with

   Ee1(ve1=0) = me1(ve1=0) c² ( 13 )

that gives

      Ekin1(e−) = me1(ve1=0) c² [(1−(ve1² / c²))−½
− 1]; ( 12.1 )

me1(ve1=0) is the rest mass and ve1 the velocity of the electron relative to a proton at rest −
a reasonable point of view, because the proton is a test particle, i.e. subject. Thus, a
proton has the rest mass

 mp1(vp1=0) = [ E1(d) + E1(u1) + E1(u2) ] / c² ; ( 14 )

with equations (9) and (10):

 mp1(vp1=0) = 3 Ee1 / c² ( 14.1 )

and with the definition

 Ee1 := me1 c² ( 15 )

the ratio between proton rest mass and electron mass is

  ß1 := mp1(vp1=0) : me1 = 3 ; ( 14.2 )

where me1 is the mass of the electron acting on the resting proton.

If the entire mass in the universe is Mun1 := mp1(vp1=0) + me1, ( 16 )
one gets with equation (14.2) the following result:

Mun1 = 3 me1 + me1 = 4 me1 ; ( 16.1 )
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but now, a closer look at the potential energy Epot1(e−) is necessary. Alan Guth already
stated: „It is said that there’s no such thing as a free lunch. But the universe is the ultimate
free lunch.“6 With this sentence he wanted to point up the fact that the positive mass−
energy in the universe, Eun1 := Mun1 c², exactly cancels out the negative binding energy
between all quanta in the universe; there, a proton which consists of two up and one down
quark is the test particle. At M =1 interactions between the elements of the proton are not
definable. Thus, with a clear conscience, one may say that the potential energy in the
universe which is equal to the potential energy of the electron is also equal to the negative
mass energy in the universe, if M =1:

     Epot1(e−) = −4 Ee1 ; ( 17 )

and now, the well−disposed reader may turn his attention to Rudolf Claudius’ virial
theorem7. It provides a general equation that relates the average over time of a stable
system’s total kinetic energy consisting of mass points, bound by potential forces, with
that of its total potential energy, where the average over time of the enclosed quantity
doesn’t change (at this point, the attentive reader will ask himself why the author is stating
this in the face of the fact that the universe is obviously expanding, but that apparent
contradiction shall be discussed later). Now, in the case of M=1, in compliance with the
virial theorem the following equation is valid for gravitation and Coulomb attraction:

     Ekin1(e−) = − Etot1(e−) ; ( 18 )
with equation (11):

     Etot1(e−) = ½ Epot1(e−) ; ( 11.1 )
where
                                                                     mp1(vp1=0) me1 G        e1*²

      Epot1(e−) = − __________________________ − _______ ; ( 19 )
                                                                               r1                       r1

is the potential energy of the electron, i.e. the amount of energy contained in both
gravitational and Coulomb attraction. r1 is the distance between electron and proton.

With equation (17):
      Etot1(e−) = ½ ( −4 Ee1 ) ;

      Etot1(e−) = −2 Ee1 ; ( 11.2 )
in (8):

   Ee1 = Ee1(ve1=0) − 2 Ee1 ;

   Ee1(ve1=0) = 3 Ee1 ; ( 11.3 )

that yields with (13) and (12.1)

       Ekin1(e−) = 3 Ee1 [(1 − (ve1 / c)²)−½
− 1] ;

with (18):

    −Etot1(e−) = 3 Ee1 [(1 − (ve1 / c)²)−½
− 1] ;

11



and with (11.2):

2 Ee1 = 3 Ee1 [(1 − (ve1 / c)²)−½
− 1] ;

the outcome of this is:

            2 : 3 = (1 − (ve1 / c)²)−½
− 1 ;

(1 − (ve1 / c)²)½
    = 3 : 5 ; / squared

                     1 − (ve1 / c)² = 9 : 25 ;

                                                       ve1²     16
 ______ = _____ ;
   c²       25

because ve1 > 0 :   ve1              4
 ______ = _____ ; ( 12.2 )
   c         5

given an image number M =1, this equation states that the velocity of the electron as
particle circling around the motionless proton is four fifth of the velocity of light.

Now, the author uses a trick. He splits time into two orthogonal dimensions; he calls one
of those the „cyclic time dimension“ ξ. And he calls the other one ψ, the „translative time
dimension“, being perpendicular to ξ. If the image number M equals one, the universe is
seen as if time would „stand still“ into the direction of ψ , in the sense that the only elapsed
time is cyclic. A full time cycle corresponds to a complete revolution of the electron around
the resting proton, the quanta being seen here as particles. Along the translative time
dimension ψ, which is orthogonal to ξ  , an observer gets the impression as if the electron
would literally be everywhere on its orbit around the proton at the same time. The reader
is now surely realising that the author is assigning translative time to the direction of time
as humans experience it, while the state of the universe at M =1 is described in the
context of cyclic time. Using this frame of reference, it becomes obvious why Claudius’
virial theorem is applicable here. In the direction of cyclic time the electron has always
definable whereabouts, while this is not true in the context of the translative time
dimension − there, the electron is „fuzzy“ and presents itself as a standing wave with the
energy

    Ee1 = h νe1 ; ( 20 )

h is the Planck constant and νe1 the standing wave’s frequency on the Bohr radius of the
hydrogen atom. Thus, equation (12.2) describes the electron in the context of cyclic time,
where it circles around the proton with 4/5th of the velocity of light, while equation (20)
makes a statement about the electron along the translative timeline. And the frequency νe1

is in turn defined as follows:
   νe1 := c : λe1 ; ( 21 )

where λe1 is the wavelength.
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The frequency is exactly equal to the reciprocal value of the time needed to generate a
standing wave on the Bohr radius of the hydrogen atom. This time is

    t e1 := 1 / νe1 ; ( 22 )

t ξ1 is the time the electron needs into the direction of cyclic time at M =1 to accomplish a
full revolution along its orbit. its velocity is

    ve1 = λe1 : t ξ1 ; ( 23 )
with equation (21):
                                                                   c       1

    ve1 = _____ · _____ ; ( 23.1 )
   νe1    t ξ1

and with (22):
                                                                               1

    ve1 = c · t e1  · _____ ;
     t ξ1

   ve1       t e1

    
_____ = ______ ;

    c        t ξ1

with (12.2):
  t e1         4
    

_____ = ____ ( 12.3 )
  t  ξ1       5

In cyclic time, at the end of t e1 , the electron has covered the distance

   se1 := ve1 · t e1 ( 24 )

    4
    se1 = ______ c · t e1 ;

    5

and as soon as t ξ1 has elapsed, the electron has accomplished to circle around the
complete orbit in the context of cyclic time, as already mentioned earlier.

The radius of the electron’s orbit is r1. So the following equation applies:

    λe1 = 2 · π · r1 ; ( 25 )
with equation (19) one gets

       2 · π · [ mp1(vp1=0) me1 G + e1*² ]
       Epot1(e−) = − ________________________________________________ ;

          λe1

with (14.2):       2 · π · [ 3 me1² G + e1*² ]
       Epot1(e−) = − ___________________________________ ;

   λe1
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together with (20) and (21), this results in

      2 · π · Ee1 [ 3 me1² G + e1*² ]
       Epot1(e−) = − _______________________________________ ;

   c · h

with equation (15) und h = 2 · π · h :

       me1 c [ 3 me1² G + e1*² ]
       Epot1(e−) = − ____________________________________ ;

 h
with (11.1) :

      3 me1³ c G + me1 c e1*²
    2 Etot1(e−) = − ________________________________ ;

h
and (11.2) :

   3 me1³ c G + me1 c e1*²
            4 Ee1 = ________________________________ ;

h

with (15), if me1 > 0:
 4 c h = 3 me1² G + e1*² ;

          e1*²

       4 = 3  me1²  (c h / G )−1 + _______ ;
          c h

this results in

  e1*²

 _______ = 4 − 3 · me1² · (c h / G )−1 . ( 19.1 )
  c h

The electron is a subset of the subject which is defined by the only single element that has
a negative electric charge. This is a Black Hole; the author already mentioned that at the
beginning of this chapter. Therefore the Kerr−Newman equation8 for the static boundary
applies here; and at this point, the reader may bring himself to mind that this discussion
treats of a smallest possible universe. And if it is „smallest possible“, the Bohr radius is
exactly equal to the static boundary:

       r1 = me1
 G c−2 + (me1² G² c−4 −e1*² G c−4)½ ; ( 26 )

it has to be considered that the complete Kerr−Newman equation for the static boundary
is

                                          r1 = me1
 G c−2 + [ me1² G² c−4 −e1*² G c−4 − (Se1²/me1²c²) cos²ϑ  ]½;
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where Se1 is the angular momentum of the Black Hole and ϑ  the angle between its axis of
rotation and the radial line connecting the Hole and its observer; for the equatorial plane,
ϑ is equal to 90°, for its north pole 0° and for its sout h pole 180°. However, the author
assumes for this model that the elements of the test set do not have spin, simply because
the lack of a discribable inner structure of those elements prevents spin to be definable.
This means that Se1 = 0; furthermore, only equation (26) is valid here, a solution of the
Reissner−Nordström metric. Together with equation (19.1) this results in

       r1 = me1 G c−2 + 2 (me1² G² c−4 −G h c−3)½ ; ( 26.1 )

equation (19) with (11.1) und (11.2) yields

    mp1(vp1=0) me1 G       e1*²
  4 Ee1 = _________________________ + _______ ;

      r1                    r1

     mp1(vp1=0) me1 G + e1*²
       r1 = ___________________________________ ;

4 Ee1

with equations (15) and (14.2)
     3 me1² G + e1*²

       r1 = ________________________ ;
4 me1 c²

and with equation (19.1) that results in
    3 me1² G + 4 c h −  3 me1² G

       r1 = ________________________________________ ;
4 me1 c²

        h
       r1 = ___________ ; ( 19.2 )

     me1 c

with equation (26.1):
    h         G

           ________ = me1 ___  + 2 [ me1² G² c−4 − G h c−3 ]½ ;
           me1 c           c²

and eventually, after some transformations, that results in

me1
4 − 2/3(c h /G)me1²  − 1/3(c h /G)²  =  0 ;

hence:

  me1² = 1/3 (c h /G) ± 2/3 (c h /G) ;

imaginary masses shall be excluded; therefore the result for the squared electron mass is

  me1² = (c h /G) ;
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whose radix is

   me1 = (c h /G)½
 ; ( 26.2 )

what corresponds exactly to one Planck mass (and is > 0).

Inserted in equation (19.1):

  e1*²

 ______ = 4 − 3 · (c h /G) · (c h /G)−1 ;
  c h

  e1*²
   α1 =  ______ = 4 − 3 = 1 ; ( 19.3 )

  c h

this means that the elementary electric charge was significantly bigger at M = 1 than today
(approximately 11.7 times) if it is correct that in the case of M = 1 the described situation
corresponds to the beginning of the expansion of the universe − a statement not yet
proven. The static boundary which is identical to the distance between electron and proton
is the result of equations (26.2) und (19.2); at M = 1 it is identical to the Planck length:

      r1 = (G h /c³)½
. ( 26.3 )

Now, the kinetic energy of the electron shall be calculated. Equations (26.2) and (15) give

      Ee1 = (c h /G)½
 · c² ; ( 27 )

this with equation (11.3):

      Ee1(ve1=0) = 3 ·  (c h /G)½
 · c² ; ( 27.1 )

what is insofar of interest, as the rest mass of the electron is identical to the rest mass of
the test particle, i.e. the proton.

With equations (12.1), (12.2) and (13) the result for the electrons kinetic energy is

         Ekin1(e−) = 2 ·  (c h /G)½
 · c² ; ( 27.2 )

but this is definitely not  the kinetic energy of the one element of the test set bearing a
negative electric charge, which was perhaps somewhat prematurely called a „down
quark“by the author, and in consequence neither of the two other so−called „up quarks“,
because in this model, the elements of the test set do not show any differences between
each other concerning their mass, electric charge or velocity. Here, the significant criterion
consists in the fact that the electron has potential energy, but not the three „quarks“,
because they exist inside the test particle and therefore at the bottom of its potential well;
they cannot possibly „fall deeper“ towards the observer!
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But they also have kinetic energy inside the test particle; they have to have it, if they are
moving around. So, the following equation applies here:

       Ee1 = E1(d; vd1=0) / {[1 − (vd1² / c²)]}½ ; ( 28 )

where  vd1 is the velocity of the„Down−Quark“, which is identical to the velocity ve1 of the
electron (because the element is the same). And now it becomes clear that the rest mass
of the „down quark“, E1(d; vd1=0), cannot be identical to the rest mass of the electron. This
shall be deduced as follows: With

        ve1 = vd1

as well as equations (26.2) and (27) one gets

     E1(d; vd1=0) = (c h /G)½
 · c² · {[1 − (ve1² / c²)]}½ ; ( 28.1 )

what yields with equation (12.2)

     E1(d; vd1=0) = 3/5  · (c h /G)½
 · c² . ( 28.2 )

In consequence, the kinetic energy of the „down quark“ is

Ee1 − E1(d; vd1=0) = (1 − 3/5) · (c h /G)½
 · c²

or

Ee1 − E1(d; vd1=0) = 2/5  · (c h /G)½
 · c² ; ( 28.3 )

what shall be defined here as Ekin1(d) :

               Ekin1(d) := 2/5  · (c h /G)½
 · c² ; ( 28.4 )

and it’s completely clear that

Ekin1(u1) = Ekin1(u2) = Ekin1(d) ; ( 29 )

because in this model, the impetus’ scalar value of each of those three „quarks“ is
assumed as being identical.

An important and non−trivial consequence is that at M =1 the kinetic energy of the
electron is five times as big as the kinetic energy of the „quarks“. The latter accounts for
40% of the total observable mass of each particular „quark“. This isn’t much, compared to
the present situation where the energy of the quarks is mostly kinetic.

Back to the Kerr−Newman equation.
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Earlier in this chapter, the author used the equation for the static boundary in order to
calculate the distance between the test particle, i.e. the proton, and its orbiting electron.
Now, this equation is only valid for non−rotating Black Holes, because it doesn’t contain
the term with the angular momentum; the Reissner−Nordström equation. It is identical to
the Kerr−Newman equation, here with the term in question:

r1 = me1
 G c−2 + [ me1² G² c−4 −e1*² G c−4 − (Se1²/me1²c²) ]½;

and without this term, simply because „frame dragging“ cannot be avoided under these
circumstances (the rotation of the Black Hole imposes itself on the test particle), this leads
to equation (26). Therein, r1 stands also for the Schwarzschild radius of an electric
charged Black Hole. At M =1 it is equal to the radius of the electron.

In the introduction the discussion of Eddington’s considerations led to the assumption that
the entire mass of the electron has an electromagnetic cause. It was mentioned that its
radius could be shown to be the result of the following equation:

   re   =   e*²/ ( 2 me · c²) . ( 3 )

At M =1 gravitational interaction between electron and proton is exactly equal to their
electromagnetic interaction; see equation (19.3). Hence re obeys a corrected relation
which shall be derived now.

The classical model of the electron describes it as a homogenous sphere with the mass
me, while its electrical charge is evenly spread over its surface. But here, this particle is
thought to be a Black Hole, so nothing can be legitimately stated about its innards;
therefore, one is forced to assume that also its mass is evenly spread over its surface. So
there is neither an electric nor a gravitational field inside this sphere. This corresponds to
the statement that both electrical and gravitational field intensity equal to zero inside the
sphere and thus can be calculated by integrating them over the outside space.

Let Ee be the electrical and Eg be the gravitational field intensity. It is noteworthy in this
context that the latter represents a physical quantity which is pretty controversely
discussed.

In order to explain what’s the problem here, the author needs to haul off a little bit. If two
electric charges come together, the field energy collapses and the potential energy of the
field is transformed into kinetic energy of these charges. More accurately: An electric field
between a positive and a negative charge has a definite total energy which is proportional
to the integral of Ee² and smaller than the sum of the energy of the separate fields of each
of both charges which are assumed here as point−shaped. If they approach each other,
their total energy diminishes, because work is performed on them. As soon as both
charges come together, the field and its potential energy vanish. If a gravitational field is
considered, the integral of Eg² is bigger than the respective integrals for each of both
involved masses; if they approach each other, the total integral becomes bigger, in spite
work is performed on them. As soon as both masses combine, the integral reaches a
maximum, although no potential energy is left.

18



The author offers the following way out of this problem: Try to imagine that a Black Hole
has a Schwarzschild radius which is bigger than zero simply because a repelling force
from within keeps the Black Hole from collapsing to a mathematical point, i.e., a
singularity. It has to be completely clear that this is only a theoretical workaround,
because the extent of a Black Hole is a consequence of the well known laws of
gravitation. In order to avoid conflicts and contradictions with the latter the author uses this
workaround only within the range of the Black Hole. Outside the Hole there is no such
force. Its introduction into this model represents only an alternative method of approach
and is thought to illustrate the analogies between the equations describing electro−
magnetic repulsion and those dealing with the gravitational properties of a Black Hole. In
no case so−called „antigravitation“ shall be introduced through a loophole into this model.
The author hopes to be able to make it absolutely clear that the assumption of such a
repelling force playing an antagonist role to gravitational attraction would make it possible
to calculate the Schwarzschild radius, i.e. the extent of a Black Hole, exactly like the
extent of an electrically charged particle, i.e. an electron. Therefore, the author introduces
here a so−called „gravitational elementary charge“ g* :

  g* := ι  me G½ ; ( 30)

ι  is the imaginary number, the square root of  −1; me stands for the mass of the electron.
Nota bene, the author doesn’t set mass equal to gravitational charge, as it may be widely
accepted by others; he will justify the reason later.

The field connected to this gravitational elementary charge doesn’t act on anything
outside the electron. Nevertheless it will be used here as hypothetical auxiliary quantity. In
order to avoid possible inconsistencies, the author postulates another universe, in which
this field inside the Schwarzschild radius is extending itself. The Hole would thus have to
exist in both universes.

And now, in the first run, the author turns his attention to the unproblematic part; let the
electrical field intensity be

   Ee = e* /  4πε0r² ; ( 31 )

In this paper, he uses the MKS unit system, and that’s why he sets the dielectric constant
as follows:

  1
   ε0 := _____ ; ( 32 )

 4π

under these conditions, the energy density of an electric field is

 1
      ρe = _____ ·  Ee² ; ( 33 )

8π

and now to this controversial discussion about gravitational field intensity. The electron at
M =1, i.e. its single element, a Black Hole, is not only a carrier of an electric, but also of a
gravitational charge g1*. In analogy to electric charge and in unison with it, the latter
causes the element of the set which is the electron to maintain its extent in cyclic time.
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First of all, the question has to be asked to what extent Gauß’s law
 →    →

        −∇ ²Φe = ∇  · Ee = 4π  ρe ( 34 )

is valid for gravitational fields; ∇  is the divergence operator; in Euklidean space ∇ ² is often
referred to as the „Laplace−Operator“; let Φe be the scalar potential generated by electric
charge. In the case of Euklidean space the Poisson equation can be written as follows:

∇ ²Φ = f .

In three−dimensional Cartesian coordinates, this takes the form22:

        =

There’s repulsion between homopolar electric charges, but masses attract each other; so
equation (34) has to be provided with an extra minus sign in order to be valid for
gravitational fields; therein, the electric potential, the electric field intensity and the
electromagnetic field energy density have to be replaced by their gravitational
counterparts. That leads to equation (34.1) :

 →    →
        −∇ ²Φg = ∇  · Eg = −4π  ρg . ( 34.1 )

Let the gravitational field intensity of the electron at M =1 be

             Eg1 = g1* /  re1² ; ( 35 )

now, it’s one of the author’s main concerns to point out how important it is to be aware
that this gravitational charge is sort of existing only infinitesimally inside the Schwarzschild
radius; it doesn’t have any effect on the outside world. But the same physical laws apply
as for the electric charge. Thus the model postulates an electrical charge dispersion
outside and a gravitational charge dispersion „inside“ the Schwarzschild radius − their joint
repulsion is stabilising the Black Hole, i.e. the single element of the electron at M =1. The
author emphasises again that the gravitational charge has no effect outside this Black
Hole; the mentioned repulsion is only acting on the single element of the electron itself.

Starting with equation (34.1), one gets by integrating over the space outside the sphere
occupied by the single element of the electron which is identical to the extent of the
electron (there’s nothing else inside it)
                                                                                          →

       Wg1(e−) = ½ ⋅ ∫ d³
�

r’  ρg1 Φg1 ; ( 36 )

with (34.1) for M =1:
  →    →

        −∇ ²Φg1 = ∇  · Eg1 = −4π  ρg1 ; ( 34.2 )
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at this point it shall be mentioned that equation (34.2) illustrates a negative algebraic sign
of the gravitational field intensity, the reason for the controversies in this matter:

     1
   ρg1 = − ____ ·  Eg1² .

    8π
With (34.2), (36) results in
                                                                                             →

       Wg1(e−) = 1/8π ⋅ ∫ d³
�

r’ Φg1∇ ²Φg1 ; ( 36.1 )

by applying a three−dimensional equivalent of a partial integration using Green’s formula9

one gets
   →      →

       Wg1(e−) = 1/8π ⋅ ∫ ∇Φ g1 ∇Φ g1 d³r; ( 36.2 )

  →      →     →   →

−∇Φ g1 = Eg1 ; =>        Wg1(e−) = 1/8π ⋅ ∫ Eg1  Eg1  d³r;

what results in                                                                       →

       Wg1(e−) = 1/8π ⋅ ∫ d³
�

r’ Eg1² ; ( 36.3 )

at M =1, the electromagnetic field energy density is

  1
  ρe1 := ____ ·  Ee1² ; ( 33.1 )

 8π

in analogy to the method of deducing equation (36) from (34.1), starting with (34) one gets
the following equation for the electromagnetic field energy by integrating over the space
outside the sphere occupied by the electron as already described earlier:
                                                                                          →

       We1(e−) = ½ ⋅ ∫ d³
�

r’  ρe1 Φe1 ; ( 37 )

for M =1, equation (34) ends up as
  →    →

        −∇ ²Φe1 = ∇  · Ee1 = 4π  ρe1 ; ( 34.3 )

together with (37) :
                                                                                               →

       We1(e−) = −1/8π ⋅ ∫ d³
�

r’ Φe1∇ ²Φe1 ; ( 37.1 )
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and also here, by applying a three−dimensional equivalent of a partial integration using
Green’s formula9, one gets

     →      →

       We1(e−) = −1/8π ⋅ ∫ ∇Φ e1 ∇Φ e1 d³r; ( 37.2 )

  →      →       →   →

−∇Φ e1 = Ee1 ; =>        We1(e−) = −1/8π ⋅ ∫ Ee1  Ee1  d³r;

hence:                                                                                   →

       We1(e−) = −1/8π ⋅ ∫ d³
�

r’ Ee1² ; ( 37.3 )

and finally, the sum of the electromagnetic and gravitational field energies is

          W1(e−) = Wg1(e−) + We1(e−) ; ( 38 )

with (36.3) and (37.3):
                                                                                              →

          W1(e−) = 1/8π · ∫ d³
�
r ’ [Eg1² − Ee1²] ; ( 38.1 )

What is the author driving at? It is a preliminary adjustment of equation (3) for M =1, as
already mentioned above.

(31) with (32):

   Ee1 = e1* / re1² ; ( 31.1 )

this and (35) transform (38.1) into
        ∝

          W1(e−) =4π · ∫  ((g1*² − e1*²) : (8π r’4)) · r’² dr’ ;
      re1

  ∝

          W1(e−) = ∫  ((g1*² − e1*²) : (2 r’4)) · r’² dr’ ;
re1

        ∝

          W1(e−) = ½ · (g1*² − e1*²) · ∫ 1/r’² dr’ ; ( 38.2 )
      re1

          W1(e−) = ½ · (g1*² − e1*²) · 1/re1 ; ( 38.3 )
equation (30) at M =1:

   g1* = ι  me1 G½ ; ( 30.1 )

22



this into (38.3), which makes it clear why the author had chosen to define gravitational
charge like that and not to simply equate it with mass:

          W1(e−) = ½ · (−me1² G − e1*²) · 1/re1 ;

          W1(e−) = −½ · (me1² G + e1*²) · 1/re1 ; ( 38.4 )

and if one sets the absolute value of this total, negative field energy of the electron equal
to its mass energy, hence

       |W1(e−)| = Ee1 ; ( 39 )

then one gets with (19.3), (26.2) and (27)

    re1 = ½ · 2 · c h / ((c h /G)½ · c²) ;

and that results in

    re1 =  (G h /c³)½
( 3.1 )

thus, at M =1, the classical electron radius is equal to the Planck length; see equation
(26.3) as well. It is obvious that this distance has the significance of σ as defined by
Eddington:

    σ1 =  (G h /c³)½
. ( 3.2 )

Let’s change the topic.

At this point, the author thinks that it could be necessary to devote himself again to the
fourth case which was already discussed at the beginning of this chapter. The reason for
this is that there is yet another case in addition to that which presents a test particle
defined by three elements, two of them bearing the same electric charge, while the third
exhibits the opposite one.

The reader may visualise a test particle defined by merely two elements which bear each
an opposite electric charge. Thus, the power set of the test set is defined by 2² elements,
i.e. the test set itself, an empty set, a subset of the test set with a single positive and
another with a single negative electric charge. So that’s also a case with a total of four
particles: The two elements of the test particle and the two other particles being each the
single element of two subsets of the test set (leaving aside the empty set, i.e. a further
subset of the test set).

But at this point, an interesting question arises: How stable can such a system possibly
be? This means that if a test set is defined by two elements, one bearing a positive and
the other a negative electric charge, obviously nothing can keep both of them from
eventually colliding with each other − they are definitely moving around in a very confined
and limited quantity of space. But if they collide, they transform themselves instantly into a
photon, because they are particle and antiparticle. In consequence, the test set is an
empty set, the power set has only this empty set as a single element, and that’s it − the
world’s gone.
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O.K. − this conclusion may appear somewhat uncouth, but it throws a light on an aspect
which should not be neglected here: What about the stability of the universe and its
constituent parts? This kind of problem doesn’t seem to show up in the first alternative of
the fourth case discussed earlier in this chapter; in a test particle defined by three
elements, only two elements bearing opposite charges could destroy each other in a
collision. That would result in the disappearance of the test particle’s subset defined by
one negatively charged element (the electron), but this displeasing singular situation being
represented by one single existing element bearing a positive electric charge would
instantly be revoked for a very practical reason; a solitary particle bearing an electric
charge is inducing in the surrounding space at least one pair of oppositely charged
particles (vacuum polarisation), and the result is the previously described case of a
smallest possible test set defined by three elements. This scenario may also be described
the other way round: The spontaneous creation of a pair of particle and antiparticle is a
necessary consequence of the model − if a particle and its antiparticle would destroy each
other, only one element with a positive electric charge would be left, charge equalisation
would not be possible any more − hence, a pair of particle and corresponding antiparticle
would immediately come into existence in order to eradicate this breach of rule (the funny
thing is that this mechanism is described in contemporary physics as a violation of the law
of conservation of energy, but in contrast is needed here to avoid a set−theoretic breach
of rule). The author therefore is forced to deduce a factual absolute stability of the test
particle as well as of the subset of the test set defined by a single element needed to
establish charge equalisation. Anyway it’s sure that there is no further case besides those
discussed above, if four particles are involved and charge equalisation takes place, unless
the case of a test particle defined by four elements is included, two of them bearing a
positive and the other two having a negative electric charge, the consequence of this
being the exclusion of all other subsets of the test set with the exception of an empty set.
But the elements of the test particle do not exist for each other at M =1, and that’s why a
research into this scenario cannot reasonably be conducted; hence this case will be
excluded. However, only one of the other two variants is obviously really stable. Maybe
this could be a contribution helping to clarify the reason why protons, electrons and their
antiparticles are stable, as far it is known yet.

On the one hand something is still missing, and that’s the answer to the question, how big
this minute universe at M =1 might be. Its mass MUn1 is already known; in compliance with
equations (16.1) and (26.2) it corresponds to four Planck masses.

Be it that the distance between the test particle and its antipole in this positively bent
model of an universe is defined as DUn1. The test particle is at rest; thus also its antipole.
Why?

From the perspective of the test particle its antipole lies in every direction. This is so
because all light beams originating from the antipole diverge in all directions, and as they
approach the test particle, they are increasingly bended towards each other by four−
dimensional spacetime (in this context time is translative), and in consequence, after
having crossed the universal equator, they aspire to each other, until they meet again at
the antipole of the antipole, i.e. the location of the test particle. Metaphorically spoken, it
wouldn’t matter how madly someone „outside“ the universe would shake this four−
dimensional balloon, the test particle would not notice anything, even at M =1. Relative to
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the test particles position its antipole doesn’t change its own position neither. Hence,
everything located at the antipole is at rest relative to the test particle. The antipole would
then also be the location of the resting electron, if one could obtain the necessary energy
to achieve this at M =1. But in an universe with a very small image number, obviously
there is no such animal as an energy rental, save, one would enlarge the universe itself,
but that’s only possible if one increases the image number... At M =1, the electron orbits
around the test particle along the universal equator, so r1 doubled is equal to DUn1.

On the other hand an important question has also to be discussed here. A basic principle
in this paper is that the test particle which can be compared to a filter or a kind of
spectacles quasi tied to an observer has an inner structure that determines the structure
of the world, a subset of the power set of the test set, by exactly this very inner structure,
i.e., its elements. So,  in the final analysis, it’s logically consistent to ask the question what
exactly defines an observer. That’s easy to answer: An observation! And this consists in
the world of quanta in the encounter of two particles.

Besides the case of two elements of the test set colliding with each other, an incident
already discussed above, the reader will now ask himself what other quanta encounters
could possibly happen in this mini universe at M =1, where only an electron and the test
particle itself exist. And this question is also easily answered; according to equation (11.3)
the rest energy of the electron is exactly thrice the mass energy of the electron on the
Bohr radius around the test particle. Hence, its rest energy is precisely equal to that of the
proton. The observation of the world is in consequence, that a free electron which initially
is at rest and thus plays the role of a test particle in an universe where it is an antiproton,
sends a photon with the energy 2·Ee1 eagerly caught by a positron on its Bohr radius
which thereby mutates into a proton, thus becoming the new test particle in an universe
where the former antiproton is now an electron orbiting on its Bohr radius.

That’s the sought−after energy rental!

It could be described as a ball game which consists in an alternate succession of
universe/antiuniverse creations at M =1, each ball contact creating the point of departure
for a discrete (anti−)universal expansion along the translative time dimension ψ.
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Chapter II.

Presently, if one takes a closer look at the results of the considerations in the previous
chapter, some interesting conclusions can be made.

It’s clear that the model of the author derives both gravitational and electromagnetic
interaction from the laws of the mathematical theory of sets, what puts him into the
position of being able to present an explanation for their existence and relationship. The
test particle, i.e. the subject chosen by the author, is a set whose three elements bear an
electric charge, namely two with a positive and one with a negative arithmetic sign.
Because charge equalisation has to take place inside the subset of the power set of the
subject which was defined as „universe“ in chapter I., there has to exist another subset of
the subject with exactly one element carrying a negative electric charge. It cannot be
stated too often: It is the same element that bears a negative electric charge inside the
subject! Hence, it has literally the same properties; it’s moving around in an identical
manner. The electron, the set defined by only one element bearing a negative electric
charge, exhibits exactly the same movements as the identical element of the test particle
which plays the role of a proton here, the subject. It’s not difficult to learn from the
equations in the previous chapter that the electromagnetic repulsion between both of
these identical elements is exactly cancelled by gravitational attraction. In an allegorical
way one could describe the electron (or rather its sole element) at M =1 as a „shadow“ of
the proton’s element bearing a negative electric charge.

It could also be expressed as follows: As a consequence of the laws of set theory, the
subset of the test set called „electron“ defined by one element bearing a negative electric
charge is moving exactly like the electrically negative element of the test set itself, and this
results in both always keeping the same separation distance between each other in the
context of cyclic time. After all, it’s the same element being a component of both sets, i.e.
on the one hand of the test set, the proton, and on the other hand of the electron, a subset
of this test set being in relative motion to the latter. And now it turns out that such a
constant separation distance can only be realised if there is a repelling force which
cancels exactly the gravitational attraction between those elements carrying a negative
electric charge, which de facto are both one and the same. It follows from this that the
existence of both forces can indeed be simply explained by the laws of set theory alone.
In other words, if one introduces something like gravitation into this model, one is forced to
also introduce an equally strong repelling force between identical elements: The
electromagnetic repulsion between those elements, them being absolutely identical in
every aspect aside from their whereabouts. Alternatively one can do it the other way
round, what might indeed be somewhat more obvious: The introduction of electric charges
and their interactions into the model brings along the necessity to postulate an attractive
force which acts also on the elements of sets bearing a negative electric charge, the test
set in this model being defined by three elements, two of them carrying a positive and one
bearing a negative electrical charge, and this attractive force is gravitation; in the context
of cyclic time, it is necessary in order to physically ensure the permanent stability of the
separation distance between the elements having a negative electric charge. And now,
the attractive force between the test set’s elements with a positive electric charge and the
element defining the electron has to be a logical consequence under these circumstances,
although the author has to emphasize further down that for those elements bearing a
positive electric charge, the electron doesn’t exist, but, and quite in contrast, it is indeed
existing for the proton in its entirety, although the latter also has a positive total charge.
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Something else also has to be emphasized here: t ξ1 is a time span that exists only in
theory along the cyclic time dimension − as a matter of principle, that’s because in this
frame of reference, a full revolution on the electrons orbit around the proton is not
observable. At M =1, in the context of cyclic time, the electron at all times has covered the
distance se1, and this took the time t e1; a more distant past than t e1 doesn’t exist at M =1,
but actually also none less distant. At M =1, the time t e1 is not only the longest possible
duration, but as well the sole time that exists along the cyclic temporal dimension. The
electron is moving in relation to the proton, and the elements of the latter show also
relative movement, but always in a manner that allows the proton in its entirety to stay at
rest. This event lasts exactly for the time t e1, and that’s also the shortest possible moment.

What humans (normally?) experience is the translative time dimension. Nowadays
humanity looks back on an universe several billions of years old. But what did happen to
allow an evolution of the universe along the translative time dimension starting from M =1
to a contemporary one with M »1? The basics helping to answer this question shall be
discussed now and in the following chapter.

Considerations in this regard may start with a look at the structure of the test particle. Its
constituents, the elements of the test set, do not exist for each other at M =1 − they do not
interact. The effect the electron is exercising on the test particle can be split up into three
orthogonal vectors, in spite of the fact that the electron doesn’t exist for both elements
with a positive electric charge (this will be explained further down). And interactions
between the elements of the subject are not definable at M =1, as already explained
before.

Down quark

1. Up quark

    2. Up quark

Fig. 3: Here, the result of the reciprocal mapping of the test set’s three elements
at M =1 is depicted − that’s the structure of the test set at M = 2
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But what does happen if the image number gets bigger and bigger? It seems likely that M
increases if translative time ψ goes by.

Let it be that M = 2. The working hypothesis is that the universe expands and gets bigger;
therefore, the translative time t ψ2 is also longer than t ψ1. Although it is correct that
interactions between the elements of the test particle were not definable at M =1, this is
not true anymore; translative time went by and therefore, the elements of the test particle
had the opportunity to act upon each other in the meantime; now, they are mutually
existent. Mathematically, those are transformations; each element of the test particle
maps itself on oneself and on the other two, and that’s why the structure of these
elements has changed during the transit to M = 2 (see fig. 3).

The author thinks it’s important here to mention that at M =1, the electron is only existent
for the proton as a whole (i.e. as a set), because one element of this test set is exactly
identical to the element that defines the electron as a set; it is precisely the same element.
Without it, its „match“ in the electron would simply not exist. Thus, the element also
doesn’t exist for the other elements of the test set. That’s because they do not have an
inner structure which would allow them to perceive the electron, according to the second
assumption of this paper. So, for them, there is no electron. It follows from this that the
elements of the test set bearing a positive electric charge are negative objects (perception
interrupts), and the element carrying a negative electric charge is a positive object (a
perception)... Here, Murphy strikes again; already a long time ago, science experienced
something comparable, as it was found that electrons which carry a negative electric
charge are emitted by the cathode, the positive pole, whereas the anode (i.e. the negative
pole) sucks them in! Anyway it’s a fact within the limits of the three basic assumptions of
this paper that the electron doesn’t exist for the elements of the test set bearing a positive
electric charge, and that’s a state of affairs literally yelling to be abolished. But this
problem can only be solved if the elements of the test set are allowed to map themselves
mutually as well as on themselves.

The transformation process takes course as follows: By mapping each element on itself
and on both others, nine new elements are created; respectively three are elements of
sets originating from each of the protons three elements at M =1. In detail the situation at
M = 2 looks like this:

1. The element bearing a negative electric charge (Θ) maps itself as follows:
Θ → Θ (T−)
Θ → ⊕ 1 (V)
Θ → ⊕ 2 (V)

2. The first element with a positive electric charge (⊕ 1) maps itself as follows:
⊕ 1 → ⊕ 1 (T)
⊕ 1 → ⊕ 2 (T)
⊕ 1 → Θ (V−)

3. The second element with a positive electric charge (⊕ 2) maps itself as follows:
⊕ 2 → ⊕ 2 (T)
⊕ 2 → ⊕ 1 (T)
⊕ 2 → Θ (V−)

28



So the elements existing at M =1 become sets at M = 2, provided that the state at M =1 is
really lying in the past of this universe. The elements of the resulting sets are the following
transformations:

1st set: Θ  → Θ (T−) ( −1/3 e2* )
⊕ 1 → Θ (V−) (no total electric charge)
⊕ 2 → Θ (V−) (no total electric charge)

2nd set: ⊕ 1 → ⊕ 1 (T) ( +1/3 e2* )
⊕ 2 → ⊕ 1 (T) ( +1/3 e2* )
Θ  → ⊕ 1 (V) (no total electric charge)

3rd set: ⊕ 2 → ⊕ 2 (T) ( +1/3 e2* )
⊕ 1 → ⊕ 2 (T) ( +1/3 e2* )
Θ  → ⊕ 2 (V) (no total electric charge)

Thus, 18 elements result from those three mappings. They are bound in pairs to each
other. Arguably, according to the prerequisites in chapter I. (3rd assumption), mass and
electric charge of each of these elements are equal (each element bears one sixth of the
elementary electric charge e2*). However, binding energy is contained in these linkages,
the nine mappings, and therefore they cannot possibly still have the sum of the masses of
their constituents. Well, after the transformations, their electric charges have changed
either, as will be shown later.

The above list shows the distribution of electric charge in a proton at M = 2: After the
transformation process, the element with negative electric charge becomes the first set
with a charge of   − ¹/3 e2*, and the elements with positive electric charge become the
second and third set with  + ²/3 e2*. It’s interesting that these are the electric charges of the
quarks in nowadays protons. And each element of the sets which originated from the
primordial elements of the proton at M =1 are themselves mappings, i.e. sets defined by
two elements being bound together by a transformation.

The reader of this paper may now bring to his mind that the smallest elements of the test
set bear the same amount of electric charge (either with a leading positive or negative
arithmetic sign). Concerning the transformation process depicted above, the quanta
bearing the informations of the original elements mapping themselves on others have to
have an electric charge. They have to conform to the prerequisites of smallest particles as
soon as they begin to exist; the quantised information cannot be available in the form of a
smaller particle as the smallest possible components of the test set, because otherwise
those wouldn’t be the smallest possible components, nor could it be bigger, because
virtually as a fragment of a smallest component of the test set before the dispatch of the
quantised information it is thus characterised by a lack of an inner structure − and only
with such an inner structure could it be possible that the quantised information would be
bigger than the smallest components of the test set, because it would then itself be made
up of exactly those smallest components. It can be deduced from this that such a smallest
component is forced to decay into two exactly commensurate daughter products, i.e. new
and smaller components, one of which is the quantised information mentioned above.
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If by chance the reader knows about the rishon model of Haim Harari10, there’s certainly
something he or she has already noticed in this paper: Beside the three transformation
groups listed above, the letters T, V, T− und V− can be found in parentheses. These are
the symbols for the components of quarks and leptons suggested by Harari; they stand for
the T, the V, the anti−T and the anti−V rishon, respectively. Their equivalents in the
cosmological model presented in this paper have exactly the same properties as the
rishons proposed by Harari. However, it transcends the rishon model that the sets
corresponding to the rishons are mappings of the three elements of the test set at M =1
on each other. Furthermore, the rishon model doesn’t have an explanation for the
asymmetry between matter and antimatter, quite in contrast to this model here.

The rishon properties which were already mentioned above shall now be discussed more
thoroughly. Harari derives the colors of the quarks from the so−called hypercolors of the
rishons, which he calls „hyperred“, „hyperyellow“, „hyperblue“, „anti−hyperred“, „anti−
hyperyellow“, „anti−hyperblue“. But also in this respect, it can be shown that the
cosmological model presented here comes up with considerable simplifications; the
reader may try to imagine that the elements of the test set at M =1 are kind of „arranged“
sequentially. It’s totally clear that this definition is completely nonsensical at M =1. But as
soon as these elements map on each other, such a sequential arrangement suddenly
makes sense. In order to illustrate that, the reader may imagine the first element as „red“,
the second as „green“ and the third as „blue“. And if the first element has a negative
electric charge, then one gets at M = 2, after the transformation, the case of a „red on red“
T− rishon. Of course the first element can also be „green“ or „blue“. The result is then
„green on green“ or „blue on blue“for this T− rishon, respectively. These colors become
imaginable parameters if one tries to visualise that they have to correspond to the impetus
vectors of the respective rishon. At M =1 the impetus sum of the three test set elements is
zero, because the test particle is at rest. Each impetus has the same scalar value, so the
sum of these impetus vectors is nil, what means that the test particle is colorless. If one of
those impetus vectors is removed, one „red“ and one „green“ impetus vector is left, for
example − and together, those would form an „antiblue“ vector − it’s opposed to the „blue“
impetus vector. Obviously, at the transit from M =1 to M = 2, the 18 elements created from
the original three elements of the test set at M =1 have quantitatively smaller impetus
vectors, but each of them has the same scalar value. As a consequence of the situation at
M =1, they are collinear with the vectors at M =1. So one can also speak here of „red“,
„green“ and „blue“ vectors and elements. For example, let the test set element with a
negative electric charge at M =1 be „red“, the first element with a positive electric charge
be „green“ and the second such element be „blue“. Then the result for M = 2 is

1st set: Θ  → Θ (T−) ( −1/3 e2* −red on red)
⊕ 1 → Θ (V−) (no total electric charge −green on red)
⊕ 2 → Θ (V−) (no total electric charge −blue on red)

2nd set: ⊕ 1 → ⊕ 1 (T) ( +1/3 e2* −green on green)
⊕ 2 → ⊕ 1 (T) ( +1/3 e2* −blue on green)
Θ  → ⊕ 1 (V) (no total electric charge −red on green)

3rd set: ⊕ 2 → ⊕ 2 (T) ( +1/3 e2* −blue on blue)
⊕ 1 → ⊕ 2 (T) ( +1/3 e2* −green on blue)
Θ  → ⊕ 2 (V) (no total electric charge −red on blue)
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and, at M =1, if the test set element with the negative charge is called „green“, the first
element with a positive charge „blue“ and the second such element „red“, at M = 2 the
result is

1st set: Θ  → Θ (T−) ( −1/3 e2* −green on green)
⊕ 1 → Θ (V−) (no total electric charge −blue on green)
⊕ 2 → Θ (V−) (no total electric charge −red on green)

2nd set: ⊕ 1 → ⊕ 1 (T) ( +1/3 e2* −blue on blue)
⊕ 2 → ⊕ 1 (T) ( +1/3 e2* −red on blue)
Θ  → ⊕ 1 (V) (no total electric charge −green on blue)

3rd set: ⊕ 2 → ⊕ 2 (T) ( +1/3 e2* −red on red)
⊕ 1 → ⊕ 2 (T) ( +1/3 e2* −blue on red)
Θ  → ⊕ 2 (V) (no total electric charge −green on red)

and as well as in the case of a „blue“ test set element with a negative charge, a first „red“
and a second „green“ element with positive charge at M = 2 :

1st set: Θ  → Θ (T−) ( −1/3 e2* −blue on blue)
⊕ 1 → Θ (V−) (no total electric charge −red on blue)
⊕ 2 → Θ (V−) (no total electric charge −green on blue)

2nd set: ⊕ 1 → ⊕ 1 (T) ( +1/3 e2* −red on red)
⊕ 2 → ⊕ 1 (T) ( +1/3 e2* −green on red)
Θ  → ⊕ 1 (V) (no total electric charge −blue on red)

3rd set: ⊕ 2 → ⊕ 2 (T) ( +1/3 e2* −green on green)
⊕ 1 → ⊕ 2 (T) ( +1/3 e2* −red on green)
Θ  → ⊕ 2 (V) (no total electric charge −blue on green)

and it’s not difficult to see that one has to deal here with a total of 27 different elements.

Given this „color arithmetic“, the reader may feel free to play around with it a little bit; „blue
on blue“ gives „doubleblue“, for example, „red“ on „blue“ „antigreen“ etc. It’s easily
discernible that Hararis hypercolors are now obsolete, because in the model of the author,
three colors are by far sufficient.

Back to the second assumption. The test set at M = 2, a nearly „modern“ proton, is
defined by the elements of the quarks described above (the rishons), which in turn are
transformations of the elements of the test set at M =1. Elements of the power set of the
test set have to be altogether sets which are subsets of the test set and therefore defined
by elements of the latter. And these elements have exactly the same properties as
those elements which define the test set, not only the same electric charges, but also the
same masses/energies! And into the bargain, they even move exactly the same way.

The electron which orbits around the resting test particle is for example a set defined by
three T− rishons − it can be derived from the above list which ones:

Θ  → Θ (T−) ( −1/3 e2* −red on red)
Θ  → Θ (T−) ( −1/3 e2* −green on green)
Θ  → Θ (T−) ( −1/3 e2* −blue on blue)

31



and that leads the baffled reader at once to ask the question, how the three elements
possibly might combine to one electron, while they originate from three completely
different initial situations. They cannot be simultaneous, can they?!?

That will be answered as follows: Without including the „color model“ explained above, the
test set is a proton whose only element completely set up of negative electric charges is a
T− rishon. Under these circumstances, a charge equalisation is not possible; in addition,
not each element of the proton would have a corresponding anti−particle or rather its
counter−element somewhere in the world, which in this model is a subset of the power set
of the test set. In this case the world as a whole would have a total electric charge of  + ²/3
e2*, and not each particle its anti−particle. Both are properties of the universe not
observed today. So, at M = 2, there’s a kind of „veil“ hiding this displeasing two−third
charge, perhaps causing the shortest measurable chronological uncertainty
τ2  := σ2 /c to exceed Planck time − it might even triple it. This uncertainty creates the
successive states of the test sets T− rishon, i.e. "red on red", "green on green" and "blue
on blue" as an example, to be de facto isochronous. And so the model provides an
explanation for the fact that the boundary value of the precision of localisation
measurements σ is so much bigger than Planck length in nowadays universe.

At M = 2, the reader may have a look at the subset of the power set of the proton, in which
each element as a particle has its anti−particle as element of the said subset of that power
set; he will then realise that this subset of the power set of the test particle is defined by
the following elements: Three protons, accordingly also three electrons, and in addition six
neutrinos as well as their anti−particles, six anti−neutrinos. This is definitely the maximum
number of those quanta. So, in this variation of the model, at M = 2, the world is assigned
to a state in which all three electrons are orbiting on their highest possible radius with a
main quantum number n = 2. If all these electrons are falling back on their Bohr radius,
three photons are added to the particle zoo described above.

Here, as already implied by the term „variation“ used above, the author sets the focus on
the mathematically simplest case with all three electrons orbiting on the highest possible
radii of their respective hydrogen atoms with n = 2.

In order to describe this universe at M = 2, at first the masses and the mass energies of
the smallest elements of all quanta have to be calculated. From now on, the author calls
them „epsilons“; each rishon is composed of 2 epsilons.

To illustrate this: The T− rishon is the result of mapping the down quark at M =1 on itself.
Let  ETu2 be the mass energy of the T− rishon (as well as of its anti−particle, the T rishon)
at M = 1, if it’s „unicolored“.

So, what the hack does that mean now?

The author calls rishons „uni−colored“, if they are composed of equally colored epsilons,
i.e. if they are the result of red−on−red, blue−on−blue or green−on−green mappings.
„Varicolored“ will describe such rishons that are composed of epsilons with different
colors.
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The following relativistic equation applies for the unicolored T− rishon:

 [ETu2]² = [ETu2(vTu2=0)]² + ( pTu2 · c )² ; ( 40 )

where ETu2(vTu2=0) is the rest energy and pTu2 the impetus of the unicolored T− rishon.

    ETu2 = 2 · Eε2 ; ( 41 )

where Eε2 is the energy of the epsilon. It also has a rest energy, and that is Eε2(vε2=0).

Because two epsilons combine to form a T− rishon (it could also be expressed as follows:
One is mapping itself on the other) which originate from the same quark at M =1, no
potential energy differences exist; gravitational attraction and electrical repulsion are
equal:

        mε2² · G = | −[ 1/6 · e2* ]² | ;

that results in

        mε2² · G = e2*² : 36 ; ( 42 )

and the impetus is

      pε2 = mε2 · vε2 ; ( 43 )

(40) and (41) give

[2 Eε2]² = [ETu2(vTu2=0)]² + ( pTu2 · c )² ; ( 40.1 )

the total kinetic energy is the sum of the kinetic energies of the epsilons:

[2 Eε2]² = [2 Eε2(vε2=0)]² + ( pTu2 · c )² ;

therefore,  pTu2 is also the sum of the discrete impetuses of the epsilons:

[2 Eε2]² = [2 Eε2(vε2=0)]² + ( 2 · pε2 · c )² ;    / : 4 ;

     Eε2² =  [Eε2(vε2=0)]² + ( pε2 · c )² ; ( 40.2 )

with (43):

    Eε2² =  [Eε2(vε2=0)]² + (  mε2 · vε2 · c )² ;
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and with

     Eε2 = mε2 · c² ( 44 )

one gets

    Eε2² =  [Eε2(vε2=0)]²  +  Eε2² · vε2² / c² ;

  [Eε2(vε2=0)]² =  Eε2² · (1 − (vε2 / c)²) ; / √

     Eε2(vε2=0) = Eε2 · (1 − (vε2 / c)²)½
 ;

or

     Eε2 = Eε2(vε2=0) · (1 − (vε2 / c)²)−½
 ; ( 40.3 )

for unicolored T− rishons, with (41), this results in

    ETu2 = 2 · Eε2(vε2=0) · (1 − (vε2 / c)²)−½
 ; ( 40.4 )

the unicolored T− rishon moves, as already discussed, always exactly the same way as its
components, the epsilons. So the following equation applies:

     vTu2 = vε2 ; ( 45 )

whith (40.4), that results in

       ETu2 = 2 Eε2(vε2=0) · (1 − (vTu2 / c)²)−½
; ( 40.5 )

but now, the varicolored rishons shall be discussed. In their case, the total impetus of the
T or T− rishon is exactly equal to that of an epsilon (may the reader be reminded that red−
on−blue gives anti−green − in contrast, red−on−red would give doublered, blue−on−blue
doubleblue):

    [ETb2]² = [ETb2(vTb2=0)]² + ( pε2 · c )² ; ( 46 )

with the equations (43) and (44), that results in

    [ETb2]² = [ETb2(vTb2=0)]² + Eε2² · vε2² / c² ; ( 46.1 )

but this is also correct:

    [ETb2]² = [ETb2(vTb2=0)]² + ( pTb2 · c )² ; ( 47 )
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with
        pTb2 = mTb2 · vTb2 ( 48 )

and with
        ETb2 = mTb2 · c² ( 49 )

(47) results in:

    [ETb2]² = [ETb2(vTb2=0)]² + ETb2² · vTb2² / c² ; ( 47.1 )

       ETb2 =  ETb2(vTb2=0) · (1 − (vTb2 / c)²)−½
; ( 47.2 )

and (47.1) gives with (46.1)

   Eε2² · vε2² / c² = ETb2² · vTb2² / c² ;

here, in analogy to the case of the unicolored T and T− rishons, it is correct that

        vTb2 = vε2 ; ( 50 )

=>     Eε2² · vε2² / c² = ETb2² ·  vε2² / c² ;

        Eε2² = ETb2² ; / √

(since mass energies are positive)       Eε2 = ETb2 ;

        ETb2 = Eε2 ; ( 50.1 )
with (41):

        ETu2 = 2 · ETb2 ; ( 50.2 )

now, back to the electrons. It’s easy to learn from the previous remarks that electrons,
whose elements are T− rishons, have different energies depending on whether their
elements are uni− or varicolored. The reader may now recognise that here, only one
electron is yielded that does exclusively consist of three unicolored T− rishons, two
electrons are defined by three varicolored rishons, and three electrons are defined by an
uni− and two varicolored T− rishons. It’s understood that, seen from the outside, the
electrons are colorless.

Let now be

         Ee2 = me2 c² ( 51 )

the mass energy of the electron orbiting around the test particle on the Bohr radius; let me2

be its mass.
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Let
Ee2(n=2) = me2(n=2) c² ( 52 )

be the mass energy of the electron orbiting on the 2nd radius around the test particle; let
me2(n=2) be its mass.

Let

        Ee2(H;n=1) = me2(H;n=1) c² ( 53 )

be the mass energy of the electron orbiting on the Bohr radius around one of both protons
in the universe at M = 2 not playing the role of a test particle; let me2(H;n=1) be its mass.

At last, let

        Ee2(H;n=2) = me2(H;n=2) c² ( 54 )

be the mass energy of the electron orbiting on the 2nd radius around one of both protons in
the universe at M = 2 not playing the role of a test particle; let me2(H;n=2) be its mass.

Because by definition, the test particle is always at rest relative to an observer, the
electron being the only moving particle in the test set’s hydrogen atom, but then, in
contrast to this, in the other two hydrogen atoms existing at M = 2 the proton as well as
the electron orbiting around a common centre of mass, one may draw the conclusion that
the formula for the reduced mass can be used here in order to describe the relationship
between those four different electron types. On the one hand, the relation between the
masses of the electrons orbiting on the Bohr radius and the mass of the proton at rest
mp2(vp2=0) is

mp2(vp2=0) ·  me2

       me2(H;n=1) =   ; ( 55 )
        [ mp2(vp2=0) + me2 ]

on the other hand, the relation between the masses of the electrons orbiting on the 2nd

radius around the test particle and the rest mass of the proton is

   mp2(vp2=0) · me2(n=2)
       me2(H;n=2) =    ; ( 56 )

[ mp2(vp2=0) + me2(n=2) ]

(55) yields

me2 · me2(H;n=1)
         mp2(vp2=0) =    ; ( 55.1 )

me2 −me2(H;n=1)
and (56) can be converted into

 me2(n=2) · me2(H;n=2)
         mp2(vp2=0) =    ; ( 56.1 )

 me2(n=2) −me2(H;n=2)
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(55.1) equalised with (56.1) :

        me2 · me2(H;n=1)         me2(n=2) · me2(H;n=2)
         =    ; ( 56.2 )
        me2 −me2(H;n=1)         me2(n=2) −me2(H;n=2)

and now the three electron states already mentioned above come into play.  The one with
the highest energy, defined by three unicolored T− rishons, is exactly the very one which
the author identifies as being the electron orbiting on the 2nd radius of the test particle:

me2(n=2) = meu2 ; ( 57 )

meu2 stands for the mass of the electron being a combination of three unicolored T−

rishons.

        meu2 = 3 · 2 · mε2 ; ( 58 )

(57) and (58):

me2(n=2) = 6 · mε2 ; ( 57.1 )

and the electrons with the least energy orbit on the Bohr radii of both protons which do not
play the role of a test particle:

       me2(H;n=1) = meb2 ; ( 59 )

meb2 stands for the mass of an electron consisting exclusively of varicolored T− rishons:

        meb2 = 3 · mε2 ; ( 60 )

        !
(59) = (60):

        me2(H;n=1) =  3 · mε2 ; ( 59.1 )

and now, it can be expected that the electrons which are each built of one uni− and two
varicolored T− rishons, if this model is correct (two uni− and one varicolored T− rishons
cannot form an electron, because in this case, it couldn’t be colorless), whose mass would
thus be

        mem2 = 4 · mε2 , ( 61 )

could either be electrons with the mass me2 or such with tha mass me2(H;n=2). After all,
those are the only electrons in this model being available for these roles.
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(57.1) and (59.1) in (56.2):

       me2 ·  3 · mε2        6 · mε2 · me2(H;n=2)

        =   ;

       me2 −3 · mε2         6 · mε2 −me2(H;n=2)

resultant:

    me2(H;n=2) · [ 3 me2 −6 mε2 ] = me2 · 6 mε2 ;

    me2 · [ 3 me2(H;n=2) −6 mε2 ] = me2(H;n=2) · 6 mε2 ;

and now the statement follows that me2 has to be equal to 4 · mε2 [= mem2 , according to
equation (61)];

=>   4 mε2 · [ 3 me2(H;n=2) −6 mε2 ] = me2(H;n=2) · 6 mε2 ;

   12 me2(H;n=2) −24 mε2 = 6 me2(H;n=2) ;

        6 me2(H;n=2) = 24 mε2 ;

me2(H;n=2) = 4 mε2 ;

=>    me2 = me2(H;n=2) ; V q.e.d.

Hence:

     me2(n=2) = meu2 = 6 mε2 ;       ( 57 ), ( 57.1 )

  me2 = me2(H;n=2) = mem2 = 4 mε2 ; ( 56.3 ), ( 56.4 ), ( 56.5 )

  me2(H;n=1) = meb2 = 3 mε2 ;    ( 59.1 ), ( 60 )

(56.5) and (60) into (55.1):

     4 mε2 · 3 mε2

    mp2(vp2=0) =    ;

      4 mε2 −3 mε2 

    mp2(vp2=0) =  12 mε2 ;       ( 55.2 )
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in order to check this, (57.1) and (56.5) in (56.1):

     6 mε2 · 4 mε2

    mp2(vp2=0) =    ;

     6 mε2 −4 mε2

       24 mε2

    mp2(vp2=0) =    ;
2

    mp2(vp2=0) = 12 mε2 ; ( 56.6 )

thus, (55.2) and (56.6) are identical. V q.e.d.

     Ep2(vp2=0) = mp2(vp2=0) c² ; ( 62 )

this with ( 56.6 ) and (44):

     Ep2(vp2=0) = 12 Eε2 ; ( 62.1 )

now, the case in which the electron orbiting around the test particle reaches the 2nd radius
shall be discussed. Because the electron orbiting around the test particle on the Bohr

radius consists of one uni− and two varicolored T− rishons and thus has the energy 4·Eε2,
and, furthermore, the electron orbiting around the test particle on the 2nd radius consists of

three unicolored T− rishons and therefore has the energy 6·Eε2, the energy difference

between both must be 2·Eε2. This energy is twice as big as in the case of the other
electrons, if they change from the Bohr to the 2nd radius of their orbit around the other two
protons. So the difference between the energy of the proton at a main quantum number
n = 2 and its energy on the orbit with the Bohr radius is

         Ep2(n=2) −Ep2 = Eε2 ; ( 63 )

and this proton at n = 2 has to have less energy than the resting proton. For example, the
following combination seems to be likely:

Ep2(n=2) = (EVb2 + ETb2 + EVu2) + (EVb2 + ETu2 + ETb2) + (EVb2 + ETu2 + ETb2) ; ( 64 )
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                                       Fig. 4: Each „+“ stands for „+1/6“, each „−“ for „−1/6“ e*      

                    

EVb2 is the mass energy of a varicolored and EVu2 of a unicolored V oder V− rishon. Until
now it isn’t known how much energy the V and V− rishons have at M = 2, but one can
confidently assume that it’s smaller than the energy of the unicolored T or  T− rishons;
after all, neutrinos nowadays have extremely small mass, and in accordance with the
Harari model they are made up of three V− rishons. It’s not beside the point to assume that
this trend began to take its course at M = 2.

With (41) and (50.1):

Ep2(n=2) = (EVb2 + Eε2 + EVu2) + (EVb2 + 2 Eε2 + ETb2) + (EVb2 + 2 Eε2 + ETb2) ;

that results in

Ep2(n=2) = 7 Eε2 + 3 EVb2 +  EVu2 ; ( 64.1 )

something else is yet missing:

Ep2 = (EVb2 + ETb2 + EVu2) + (EVu2 + 2 ETb2) + (EVb2 + ETu2 + ETb2) ; ( 65 )
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                                  Fig. 5: Again, each „+“ stands for „+1/6“, every „−“ for „−1/6“ e*    

                    

with (41) and (50.1):

Ep2 = (EVb2 + Eε2 + EVu2) + (EVu2 + 2 Eε2) + (EVb2 + 3 Eε2) ;

Ep2 = 6 Eε2 + 2 EVb2 +  2 EVu2 ; ( 65.1 )

for the sake of completeness it has to be mentioned that at M = 2, the case of a proton
with remarkable low energy exists which consists of one vari− and one unicolored V−

rishon, two unicolored V rishons, one varicolored T− and four varicolored T rishons. Fig. 6
shows this case.
                                

                                                             
                                                             
                                                             
                                                             
                                                             
                                                             
                                                             
                                                             
                                                             
                                                             
                                                             
                                                             
                                                             
                                                             
                                   Fig. 6: Each „+“ stands also here for „+1/6“, „−“ for „−1/6“ e*          
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It may be noticed at once that quite in contrast to the other cases, there are no differences
between the upper right and the lower left u quark; similarly, there is no difference
between the u quark at the lower right side and the left u quark on the upper left side. So
this case is kind of incomplete and will therefore be excluded here. All quark states have
to be different, otherwise the states which are identical are simply the same sets.

Again a little bit more explicit: The case displayed in fig. 6 is excluded for the proton.

(64.1) and (65.1) into (63) :

7 Eε2 + 3 EVb2 +  EVu2 −(6 Eε2 + 2 EVb2 +  2 EVu2) = Eε2 ;

     Eε2 + EVb2 − EVu2 = Eε2 ;
   EVb2 = EVu2 ; ( 63.1 )

back to the resting proton; here the following equation applies:

Ep2(vp2=0) = (2 EVb2 + ETu2) + (EVb2 + ETu2 + ETb2) + (ETb2 + ETu2 + EVb2) ; ( 66 )

with (41) and (50.1) :

Ep2(vp2=0) = (2 EVb2 + 2 Eε2) + (EVb2 + 2 Eε2 + Eε2) + (Eε2 + 2 Eε2 + EVb2) ;

with (62.1) :           12 Eε2 = Eε2 · (2 + 3 + 3) + EVb2 · (2 + 1 + 1) ;

4 EVb2 = (12 − 8) · Eε2 ;

4 EVb2 = 4 Eε2 ;

   EVb2 = Eε2 ; ( 66.1 )

                                

                                                             
                                                             
                                                             
                                                             
                                                             
                                                             
                                                             
                                                             
                                                             
                                                             
                                                             
                                                             
                                                             
                                                             
                                 Fig. 7: Again, each „+“  stands for „+1/6“, each „−“ for „−1/6“ e*    
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this equation applies here:

Ep2(vp2=0) = (2 EVb2 + ETu2) + (EVb2 + ETu2 + ETb2) + (ETb2 + ETu2 + EVb2) ; ( 66 )

with (41) and (50.1) :

Ep2(vp2=0) = (2 EVb2 + 2 Eε2) + (EVb2 + 2 Eε2 + Eε2) + (Eε2 + 2 Eε2 + EVb2) ;

with (62.1):

12 Eε2 = Eε2 · (2 + 3 + 3) + EVb2 · (2 + 1 + 1) ;

4 EVb2 = (12 − 8) · Eε2 ;

4 EVb2 = 4 Eε2 ;

   EVb2 = Eε2 ; ( 66.1 )

with (63.1):

   EVu2 = Eε2 ; ( 63.2 )

(65.1) with (63.2) and (66.1):

    Ep2 = 6 Eε2 + 2 Eε2 + 2 Eε2 ;

    Ep2 = 10 Eε2 ; ( 65.2 )

(64.1) with (63.2) and (66.1):

      Ep2(n=2) = 7 Eε2 + 3 Eε2 + Eε2 ;

      Ep2(n=2) = 11 Eε2 ; ( 64.2 )

because of (66.1) and (63.2) all neutrinos consisting of 3 vari− or unicolored V rishons and
their antiparticles consisting of the corresponding V− rishons have the same mass energy

   Eν2 = 3 Eε2 ; ( 67 )

however, they might possibly have different kinetic energy. In plain language: Uni−, vari−
and mixed−colored neutrinos (to depict it in a somewhat incorrect manner, because V and
V− rishons, the components of neutrinos, have colors, but neutrinos themselves are
colorless) may perhaps have different velocities.
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For the sake of completeness, the energies of the different electron states at M = 2 will be
calculated now. First, starting from equations (51), (56.3), (56.4) and (56.5):

    Ee2 = 4 Eε2 ; ( 68 )

that’s the energy of the electron orbiting the test particle on the Bohr radius. Next:

      Ee2(n=2) = 6 Eε2 ; ( 69 )

resulting from equations (52) and (57.1), this is the energy of the electron with a main
quantum number n = 2 orbiting the test particle. At M = 2, because of equations (53) and
(60), the energy of an electron on its Bohr radius in one of both hydrogen atoms whose
proton is not a test particle is

  Ee2(H;n=1) = 3 Eε2 ; ( 70 )

and, last not least, because of equations (54) and (56.4) the energy of an electron orbiting
with a main quantum number n = 2 in those hydrogen atoms is

  Ee2(H;n=2) = 4 Eε2 ; ( 71 )

but now, back to the proton.

The following equation is valid:

       Etot2(p+) = Ekin2(p+) + Epot2(p+) ; ( 72 )
where

Ekin2(p+) = Ep2(vp2=0) · [(1 − (vp2 / c)²)−½
− 1] ; ( 73 )

Etot2(p+) is the total energy of each of both protons at M = 2 not playing the role of a test
particle, Ekin2(p+) is the kinetic and Epot2(p+) the potential energy of each of them;  vp2 is the
velocity of these protons relative to the test particle (all this is valid if the main quantum
number n equals 1).

From
   Ep2 = Ep2(vp2=0) + Etot2(p+) ( 74 )

one gets with (62.1) and (65.2):

         10 Eε2 = 12 Eε2 + Etot2(p+) ;

      Etot2(p+) = −2 Eε2 ; ( 74.1 )
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with the virial equation
      Etot2(p+) = ½ · Epot2(p+) ( 75 )

(72) results in
½ · Epot2(p+) = Ekin2(p+) + Epot2(p+) ;

      Ekin2(p+) = −½ · Epot2(p+) ; ( 72.1 )
(75) with (74.1):

½ · Epot2(p+) = −2 Eε2 ;

into (72.1):       Ekin2(p+) = 2 Eε2 ; ( 72.2 )

with (62.1) into (73):

          2 Eε2 = 6 12 Eε2  · [(1 − (vp2 / c)²)−½
− 1] ;

             1/6 = (1 − (vp2 / c)²)−½
− 1 ;

7/6 = (1 − (vp2 / c)²)−½
;

6/7 = (1 − (vp2 / c)²)½
; / squared

 36 = 49 · (1 − (vp2 / c)²);

   (vp2 / c)² = (49 −36) : 49 ; / √

     ____

 vp2 =  √13  /  7  · c ; ( 73.1 )

 vp2 ≈ 0.51507875363771275615... ( 73.2 )

Furthermore, the following equation applies:

Ee2 = Ee2(ve2=0) + Etot2(e−) ; ( 76 )

   Etot2(e−) = Ekin2(e−) + Epot2(e−) ; ( 77 )

    Ekin2(e−) = Ee2(ve2=0)·[(1 − (ve2 / c)²)−½
− 1];  ( 78 )

(virial equation:)     Epot2(e−) = −2 Ekin2(e−) ; ( 79 )

(79) into (77):
   Etot2(e−) = Ekin2(e−) − 2 Ekin2(e−) ;
   Etot2(e−) = − Ekin2(e−) ; ( 77.1 )

into (76):
Ee2 = Ee2(ve2=0) − Ekin2(e−) ; ( 76.1 )
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with (78):

Ee2 = Ee2(ve2=0)·[2 −(1 − (ve2 / c)²)−½]; ( 76.2 )

with (68):

        4 Eε2 = Ee2(ve2=0)·[2 −(1 − (ve2 / c)²)−½] ;

Ee2(ve2=0) = 4·Eε2 ·[2 −(1 − (ve2 / c)²)−½]−¹
; ( 76.3 )

now it’s suitable to set the focus again on the proton. In the case of the hydrogen atoms
not containing a test particle with a main quantum number n = 2, this equation applies:

      Etot2(p+;n=2) = Ekin2(p+;n=2) + Epot2(p+;n=2) ; ( 80 )

where

      Ekin2(p+;n=2) = Ep2(vp2=0)·[(1 −(vp2(n=2)/c)²)−½
−1]; ( 81 )

and from

Ep2(n=2) = Ep2(vp2=0) + Etot2(p+;n=2) ( 82 )

one gets with (62.1) and (64.2)

  11 · Eε2 = 12 · Eε2 + Etot2(p+;n=2) ;

    Etot2(p+;n=2) = − Eε2 ; ( 82.1 )
with the virial equation

    Etot2(p+;n=2) = ½ · Epot2(p+;n=2) ; ( 83 )
(80) results in

         ½ · Epot2(p+;n=2) = Ekin2(p+;n=2) + Epot2(p+;n=2) ;

     Ekin2(p+;n=2) = −½ · Epot2(p+;n=2) ; ( 80.1 )
into (83):

    Etot2(p+;n=2) = − Ekin2(p+;n=2) ; ( 83.1 )
with (82.1) and (83):

     Ekin2(p+;n=2) = Eε2 ; ( 80.2 )
into (81):

         Eε2 = Ep2(vp2=0) · [(1 − (vp2(n=2)/c)²)−½
− 1] ;

with (62.1):

         Eε2 = 12 Eε2 · [(1 − (vp2(n=2)/c)²)−½
− 1] ;

       1/12 = (1 − (vp2(n=2)/c)²)−½
− 1 ;

     13/12 = (1 − (vp2(n=2)/c)²)−½
 ;
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     12/13 = (1 − (vp2(n=2)/c)²)½
 ;

 144/169 =  1 − (vp2(n=2)/c)² ;

   (vp2(n=2)/c)² = (169 − 144) : 169 ;

   (vp2(n=2)/c)² = 25/169 ; / √

 vp2(n=2) = 5/13 c ; ( 81.1 )
          ______

 vp2(n=2) = 0.384615 · c ; ( 81.2 )

furthermore, the energy of an electron with a main quantum number n = 2 orbiting in one
of the hydrogen atoms without a test particle is

        Ee2(H;n=2) = Ee2(ve2=0) + Etot2(H;e−;n=2) ; ( 84 )

  Etot2(H;e−;n=2) = Ekin2(H;e−;n=2) + Epot2(H;e−;n=2) ; ( 85 )

Ekin2(H;e−;n=2) = Ee2(ve2=0) · [(1 − (ve2(H;n=2)/c)²)−½
− 1] ; ( 86 )

(virial equation:)   Epot2(H;e−;n=2) = −2 Ekin2(H;e−;n=2) ; ( 87 )

(87) into (85):
Etot2(H;e−;n=2) = Ekin2(H;e−;n=2) − 2 Ekin2(H;e−;n=2) ;

Etot2(H;e−;n=2) = −Ekin2(H;e−;n=2) ; ( 85.1 )
into (84):

      Ee2(H;n=2) = Ee2(ve2=0) − Ekin2(H;e−;n=2) ; ( 84.1 )
with (86):

Ee2(H;n=2) = Ee2(ve2=0) − Ee2(ve2=0) · [(1 − (ve2(H;n=2)/c)²)−½
− 1] ;

Ee2(H;n=2) = Ee2(ve2=0) · [2 − (1 − (ve2(H;n=2)/c)²)−½] ; ( 84.2 )

with (71):

         4 Eε2 = Ee2(ve2=0) · [2 − (1 − (ve2(H;n=2)/c)²)−½] ;

 Ee2(ve2=0) = 4 Eε2 · [2 − (1 − (ve2(H;n=2)/c)²)−½]−¹
; ( 84.3 )

           !
(76.3) = (84.3):

4 Eε2 · [2 − (1 − (ve2/c)²)−½]−¹
= 4 Eε2 · [2 − (1 − (ve2(H;n=2)/c)²)−½]−¹

;
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      2 − (1 − (ve2(H;n=2)/c)²)−½
 =  2 − (1 − (ve2/c)²)−½

 ;

 (1 − (ve2/c)²)−½
 = (1 − (ve2(H;n=2)/c)²)−½

 ;

  (1 − (ve2(H;n=2)/c)²)½
 =  (1 − (ve2/c)²)½

 ;  /squared

   1 − (ve2(H;n=2)/c)² =   1 − (ve2/c)² ;

(ve2/c)² = (ve2(H;n=2)/c)² ;

given that velocities are supplied with a positive algebraic sign:

        ve2 = ve2(H;n=2) ; ( 84.4 )

now, equation (53) applies to the electron orbiting on the Bohr radius of those hydrogen
atoms whose proton is not the test particle:

      Ee2(H;n=1) = me2(H;n=1) c² ;
and

      Ee2(H;n=1) = Ee2(ve2=0) + Etot2(H;e−;n=1) ; ( 88 )

         Etot2(H;e−;n=1)  = Ekin2(H;e−;n=1) + Epot2(H;e−;n=1) ; ( 89 )

Ekin2(H;e−;n=1) = Ee2(ve2=0) · [(1 − (ve2(H;n=1)/c)²)−½
− 1] ;

( 90 )

(virial equation:) Epot2(H;e−;n=1) = −2 Ekin2(H;e−;n=1) ; ( 91 )

(91) into (89):
         Etot2(H;e−;n=1)  = Ekin2(H;e−;n=1) −  2 Ekin2(H;e−;n=1) ;

         Etot2(H;e−;n=1)  = −Ekin2(H;e−;n=1) ; ( 89.1 )
into (88):

      Ee2(H;n=1) = Ee2(ve2=0) − Ekin2(H;e−;n=1) ; ( 88.1 )
with (90):

Ee2(H;n=1) = Ee2(ve2=0) − Ee2(ve2=0) · [(1 − (ve2(H;n=1)/c)²)−½
− 1] ;

Ee2(H;n=1) = Ee2(ve2=0) · [ 2 − (1 − (ve2(H;n=1)/c)²)−½] ; ( 88.2 )

with (70):

         3 Eε2 = Ee2(ve2=0) · [ 2 − (1 − (ve2(H;n=1)/c)²)−½] ;

  Ee2(ve2=0) =  3 Eε2 · [ 2 − (1 − (ve2(H;n=1)/c)²)−½]−¹
; ( 88.3 )
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In the case of an electron with a main quantum number n = 2 orbiting around the test
particle, the following equations apply:

      Ee2(n=2) = Ee2(ve2=0) + Etot2(e−;n=2) ; ( 92 )

          Etot2(e−;n=2) = Ekin2(e−;n=2) + Epot2(e−;n=2) ; ( 93 )

Ekin2(e−;n=2) = Ee2(ve2=0) · [(1 − (ve2(n=2)/c)²)−½
− 1] ; ( 94 )

(virial equation:) Epot2(e−;n=2) = − 2 · Ekin2(e−;n=2) ; ( 95 )

(95) into (93):
Etot2(e−;n=2) = Ekin2(e−;n=2) − 2 · Ekin2(e−;n=2) ;

Etot2(e−;n=2) = −Ekin2(e−;n=2) ; ( 93.1 )
this into (92):

Ee2(n=2) = Ee2(ve2=0) − Ekin2(e−;n=2) ; ( 92.1 )

with (94):

Ee2(n=2) = Ee2(ve2=0) − Ee2(ve2=0) · [(1 − (ve2(n=2)/c)²)−½
− 1] ;

Ee2(n=2) = Ee2(ve2=0) · [2 − (1 − (ve2(n=2)/c)²)−½] ; ( 94.1 )

with (69):

    6 · Eε2 = Ee2(ve2=0) · [2 − (1 − (ve2(n=2)/c)²)−½] ; ( 94.2 )

with (76.3):

6 · Eε2 = 4 · Eε2 · [ 2 − (1 − (ve2/c)²)−½]−¹ 
· [2 − (1 − (ve2(n=2)/c)²)−½] ;

3/2 · [ 2 − (1 − (ve2/c)²)−½] =  2 − (1 − (ve2(n=2)/c)²)−½
 ;

         6 − 3 · (1 − (ve2/c)²)−½
 =  4 − 2 · (1 − (ve2(n=2)/c)²)−½

 ;

3 · (1 − (ve2/c)²)−½
 = 2 · [1 + (1 − (ve2(n=2)/c)²)−½] ; /squared

   9 · (1 − (ve2/c)²)−¹
 = 4 · [1 + (1 − (ve2(n=2)/c)²)−½]²

 ;

  (ve2/c)² = 1 − 9/4 · [1 + (1 − (ve2(n=2)/c)²)−½]−²
 ;
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extracting the root, provided that the velocity of the electron orbiting around the test
particle on the Bohr radius has a positive arithmetic sign:

        ve2/c  = { 1 − 9/4 · [1 + (1 − (ve2(n=2)/c)²)−½]−²} ½
 ;

( 94.3 )

                Fig. 8: At the top, 3 electrons are depicted; beneath, on the left side, 6 antineutrinos, and on the right

side, 6 neutrinos are shown. „+“ stands for +1/6th, „−“ for −1/6th of the elementary electric
charge. In this illustration, neutrinos as well as their antiparticles are arranged in a more or
less arbitrary fashion      
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Next, the author wants to take a closer look at the particle/antiparticle ratio at M = 2, if the
protons and electrons in all hydrogen atoms have a main quantum number n = 2; in other
words, if all electrons orbit on their highest possible radii at M = 2. For this purpose, one
needs a proton like the one represented in fig. 7 and two of the three represented in fig. 4;
the last have to differ concerning the color combinations of their rishons, otherwise they
would be identical. But what about the associated electrons and neutrinos? This is
exemplified above by the illustration in fig. 8.

Aside from three protons the electrons and neutrinos / antineutrinos shown in fig. 8 are
the entirety of quanta being able to exist under the conditions already postulated above.
All mass energy existing at M = 2 manifests itself in the tree protons, one of them being
the test particle and therefore at rest, and in the particles depicted in fig. 8, i.e. the
electron of the test particle orbiting around it with a main quantum number n = 2 and
consisting of three unicolored rishons, then two more electrons forming two hydrogen
atoms with the other two protons, also in a state characterised by n = 2, and, last not
least, the six neutrinos and their antiparticles, six anti−neutrinos. In this situation, photons
are not possible, because all particles already reside in their highest possible energy
states, so photons cannot act on any other quanta; hence, according to the fundamental
assumptions in this paper, they simply don’t exist. But because electrons rapidly fall back
on an orbit with the Bohr radius (what they do in translative as well as cyclic time), three
photons are thus created which are able to move around freely; they may subsequently
interact with any appropriate quanta. But it would go beyond the scope of this paper if the
author would discuss all possible situations at M = 2. So he limits himself to the scenario
outlined above which is mathematically very simple.

May the willing reader now redirect his attention to fig. 8. Therein he can easily identify
two electrons with four (those with one unicolored and two varicolored rishons) and one
with six epsilon mass energies (only unicolored rishons) as well as 12 neutrinos / anti−
neutrinos with three epsilon mass energies each. In addition, there is the test particle with
12 and two more protons with 11 epsilon mass energies each; that’s the entirety of mass
energy existing at M = 2:

EUn2 = Ep2(vp2=0) + 2 Ep2(n=2) + 2 Ee2(H;n=2) + Ee2(n=2) + 12 Eν2 ; ( 96 )

with (62.1), (64.2), (67), (69) and (71): 

EUn2 = 12 Eε2 + 2 · 11 Eε2 + 2 · 4 Eε2 + 6 Eε2 + 12 · 3 Eε2 ;

EUn2 = 12 Eε2 + 22 Eε2 + 8 Eε2 + 6 Eε2 + 36 Eε2 ;

EUn2 = 84 Eε2 ; ( 96.1 )

as at M =1 it’s also correct here that the negative potential energy of all particles in the
universe equals their total mass energy; see equation (17) :

   Epot2(Un) = −84 Eε2 ; ( 97 )

virial equation:

   Ekin2(Un) = −Etot2(Un) ; ( 98 )
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because of

   Etot2(Un) = Ekin2(Un) + Epot2(Un) ( 99 )

the result with (98) is

   Epot2(Un) = 2 Etot2(Un) ; ( 99.1 )

and that gives with (97)

   Etot2(Un) = −42 Eε2 ( 97.1 )

with (98) one gets

   Ekin2(Un) = 42 Eε2 .       ( Douglas−Adams11−equation, 97.2 )
Let be

 Ee2 = h ·  νe2 ; ( 100 )

h is the Planck constant and νe2 the frequency of the electron orbiting the test particle on
its Bohr radius:

  c
  νe2 =   ; ( 101 )

 λe2

λe2 is the wavelength of the electron.

  λe2 = 2 π r2 ; ( 102 )

with (44), (56.5) and (51) into (100):

         4 Eε2 = h · νe2 ; ( 100.1 )

with (101):
       c

         4 Eε2 = h ·   ;

      λe2

with (102):
    c h

         4 Eε2 =    ;

  2 π r2 
with h :=  2 π · h : ( 103 )

  ch

         4 Eε2 =   ;
  r2
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 c h

Eε2 =   ; ( 100.2 )
4 · r2

and now all steps starting with equation (100) will be repeated, but this time for the orbit
with n = 2.

   Ee2(n=2) = h · νe2(n=2) ; ( 104 )

     c
   νe2(n=2) =   ; ( 105 )

          λe2(n=2)

         n · λe2(n=2) = 2 π r2(n=2) ;

well, it’s clear as daylight that n = 2 :

         2 · λe2(n=2) = 2 π r2(n=2) ; ( 106 )
with (69) into (104):

 6 Eε2 = h · νe2(n=2) ;

with (105):
  c

6 Eε2 = h ·   ;

        λe2(n=2)

with (106) and n = 2 :
  2 · c

6 Eε2 = h ·   ;

       2 π r2(n=2)

with (103):
      c h

3 Eε2 =   ;
   r2(n=2)

         c h

   Eε2 =   ; ( 104.1 )
   3 · r2(n=2)

now, in analogy to the calculations related to the electron of the test particle, the
properties of the electrons being constituents of the hydrogen atoms not containing
protons playing the role of a test particle shall be discussed.
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If n = 2, the energy of one of these latter electrons may be written as follows:

 Ee2(H;n=2) = h · νe2(H;n=2) ; ( 107 )

in analogy to the correspondent equations for Ee2 and Ee2(n=2), the frequency is

         c
  νe2(H;n=2) =   ; ( 108 )

  λe2(H;n=2)

        n · λe2(H;n=2) = 2 π r2(H;e−;n=2) ; ( 109 )

this yields with n = 2 :
        2 · λe2(H;n=2) = 2 π r2(H;e−;n=2) ; ( 109.1 )

(107) with (71):

4 Eε2 = h · νe2(H;n=2) ; ( 107.1 )

with (108):
    c

4 Eε2 = h ·   ;

       λe2(H;n=2)

with (109.1):
  2 c h

4 Eε2 =   ;

    2 π r2(H;e−;n=2)

   c h

2 Eε2 =   ;

    2 π r2(H;e−;n=2)

with (103):
c h

2 Eε2 =   ;

   r2(H;e−;n=2)

 c h

   Eε2 =   ; ( 107.2 )

   2 r2(H;e−;n=2)

     c h
   re2(H;n=2) =   ; ( 107.3 )

    2 Eε2
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and furthermore,
  Ee2(H;n=1) = h · νe2(H;n=1) ; ( 110 )

again, in analogy to the case discussed before, the following equation applies:

c
   νe2(H;n=1) =   ; ( 111 )

   λe2(H;n=1)

        n · λe2(H;n=1) = 2 π r2(H;e−;n=1) ;

this yields with n = 1 :

  λe2(H;n=1) = 2 π r2(H;e−;n=1) ; ( 112 )

(110) with (70) :

3 Eε2 = h · νe2(H;n=1) ; ( 110.1 )

with (111) :     c

3 Eε2 = h ·   ;

       λe2(H;n=1)

with (103) :
    c · 2π h

3 Eε2 =   ;

  λe2(H;n=1)

with (112) :           c h

3 Eε2 =   ; ( 110.2 )

   r2(H;e−;n=1)

     c h
r2(H;e−;n=1) =   ; ( 110.3 )

   3 Eε2

but now, back to (104.1); this equation is solved as follows:

     c h
        r2(n=2) =   ; ( 104.2 )

   3 Eε2

this and (110.3) :

r2(H;e−;n=1) = r2(n=2) ; ( 110.4 )
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(107.3) / (110.3) :

    r2(H;e−;n=2)
    = 3 : 2 ; ( 110.5 )
    r2(H;e−;n=1)

so, with (110.4) one gets:

    r2(H;e−;n=2)
    = 3 : 2 ; ( 110.6 )
       r2(n=2)

(100.2) yields:          c h
r2 =   ; ( 100.3 )

        4 Eε2

(104.2) / (100.3) :
   r2(n=2)
     = 4 : 3 ; ( 104.3 )
       r2

     r2(H;e−;n=2)
=>      = 2 : 1 ; ( 110.7 )

  r2

let it now be that
   ∆r2(H)       r2(H;e−;n=2) − r2(H;e−;n=1)
    =    ; ( 113 )
      ∆r2 r2(n=2) − r2

with (100.3), (104.2), (107.3) and (110.3), this yields

   ∆r2(H) ch / 2Eε2 − ch / 3Eε2

    =    ;

      ∆r2 ch / 3Eε2 − ch / 4Eε2

   ∆r2(H) 1/2 − 1/3
    =    ;
      ∆r2 1/3 − 1/4

   ∆r2(H)  (3 − 2) : 6
    =    ;
      ∆r2 (4 − 3) : 12

   ∆r2(H)
    =   2 : 1 ; ( 113.1 )
      ∆r2
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hence, the distance between the radii of electron orbits with n = 1 and n= 2 in those
hydrogen atoms whose proton is not a test particle is twice as big as the corresponding
distance in the hydrogen atom containing the test particle. In consequence, there is no
smaller range in the universe at M = 2, and that makes ∆r2 a good candidate for σ2 ;

 c h
∆r2 =     · ( 1/3 − 1/4 ) ; ( 114 )

 Eε2

   c h
∆r2 =      ; ( 114.1 )

12 Eε2

that’s the Compton wavelength of the resting proton, divided by 2π; there’s no particle with
a bigger mass at M = 2. So it’s allowed to state

∆r2 = σ2 ; ( 114.2 )

at M = 2, this is the smallest possible distance measurement error.

Now the question arises what might be the biggest possible distance measurement error.
This has to be the distance between the test particle and the equator of the universe, and
of that, an easily interpreted description can be generated: It shall be assumed that the
universe is finite and the (average) distance of the universal horizon is RUn . If one is asked
how far away an arbitrary object might be, whose effective distance was not yet
measured, the statement is obviously correct that the distance to this object is

½ RUn ± ½ RUn

what means half the universal radius plus or minus the biggest possible distance
measurement error. But the latter has itself at least a smallest possible error, because, as
Eddington already had pointed out, an absolutely exact distance measurement cannot be
performed; the Heisenberg uncertainty principle forbids it. Therefore the above statement
that the distance to the arbitrary object equals ½RUn ± ½RUn is not quite correct.
Consequently, in a manner of speaking, there is a „major biggest possible“ and a „minor
biggest possible“ error. There is nothing comparable concerning the smallest possible
error, because otherwise, a smaller than the smallest possible error would exist, thus
underrunning the limit of the smallest possible error, causing an obvious contradiction,
because the smallest possible error wouldn’t be smallest possible any more.

Well, and what kind of relationship do minor and major biggest possible errors have? The
Gaussian formula for the error propagation is helping here:

                                                                       2    2   ½
      X          X

∆X =     · ∆x     +       · ∆z         ; ( 115 )
      x            z

    X          X
  and    are partial derivatives of the function X = ƒ(x,z) with respect to the 
    x          z
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variables x and z. But because ∆x, ∆z and ∆X are all referring to the same quantity y yet
to be calculated, which symbolises the distance between the test particle and an arbitrary
object A in the universe, equation (115) can be simplified by omitting the partial
derivatives; they have to be equal to 1. The only fact known for sure about y is that A has
to lie in the distance x ± ∆x where x = ∆x , while the extension of the universe is RUn2 = 2·x:

0 ≤ y ≤ 2·x .
Hence, (115) yields

∆X = [(∆x)² + (∆z)²]½ ; ( 115.1 )

∆x is the minor biggest possible error,  ∆z the smallest possible error and ∆X the major
biggest possible error.

Here, one is concerned with a biggest possible error which cannot be pinned down to
something more exact than the smallest possible error allows. So the biggest possible
error lies exactly in the middle between the minor and major biggest possible error; this
average biggest possible error is identical to the static boundary of an electrically charged
Black Hole:

∆x ≤ RStat ≤ ∆X .

But why is it so that the static boundary is of the same order of magnitude as ½RUn and
not, for instance, twice as big? The attentive reader surely didn’t miss that...

The author will try to depict it.

Let a Black Hole lie with its centre of mass on the universal equator. As time goes by,
more and more mass is drawn into it by gravitational pull, and thus its Schwarzschild
radius is getting bigger and bigger. But let its centre of mass stay in this example (as)
exactly (as possible) on the universal equator.

Somewhere along the way, the Black Hole will have engulfed nearly all matter in the
universe. Now it’s nearly as big as the whole universe, but its centre of mass hasn’t
changed its position away from the universal equator. So, as soon as it has swallowed
everything but the test set, the radius of this Black Hole is equal to the distance between
the latter and the universal equator, i.e. ½Run. And that’s approximately equal to RStat .

Hopefully it becomes clear now why the static boundary has to be only half as big as the
distance between the universal horizon and the test particle.

Back to the error topic. The author adds the values of the major and minor biggest
possible error which were calculated with the simplified Gaussian error propagation
formula already deduced above and divides the result by two in order to calculate RStat as
their arithmetic average:

         RStat = ½ · { ∆X + ∆x } ;
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with (115.1):          RStat = ½ · { [(∆x)² + (∆z)²]½ + [(∆X)² − (∆z)²]½ } ;

again with (115.1):          RStat = ½ · { [(∆X)²]½ + [(∆X)² − (∆z)²]½ } ;

         RStat = ½·∆X + [¼·(∆X)² − ¼·(∆z)²]½ ; ( 115.2 )

that does also help in this context is the Kerr−Newman equation for the static boundary of
electrically charged and rotating Black Holes; the author used this equation already for the
case M =1 :

         RStat = Μ·G/c² + [ Μ²·G²/c4 − Q²·G/c4 − (S²/Μ²·c²)·cos²ϑ ]½ ;

where Μ is the mass of the Black Hole, Q its electric charge and S its angular momentum.
ϑ  is the smallest angle enclosed between the axis of rotation and the orbital plane of the
test particle, i.e. 90° minus the orbital inclination ( defined as the angle between an orbital
plane and a reference plane, the latter being perpendicular to the axis of rotation). So, if
the particles orbit crosses the axis of rotation over the north and the south pole of the
Black Hole, this angle is 0°, and if the particles orbit lies in the equatorial plane of the
Black Hole, 90°. But because the test particle is orbiting  directly on the static boundary of
what’s literally the rest of the universe (Μ stands in this case for Mun, Q is an electric
charge corresponding quantitatively to the charge of the test particle, but with the opposite
algebraic sign, and S is the angular momentum of the rest of the universe relative to the
test particle), the frame dragging phenomenon comes here into play, according to which
the rotating Black Hole sweeps everything in its vicinity along, including spacetime, and
thus, the test particle is at rest relative to the Black Holes rotation. Therefore, S equals
zero, and that results in the Reissner−Nordström equation:

RStat = Μ·G/c² + [ Μ²·G²/c4 − Q²·G/c4 ]½ ;

but here it’s necessary to be a little bit more thorough; Μ is equal to the mass of the
universe minus the mass of the test set. Aside from the case M =1, the latter undoubtedly
consists of sundry protons; i.e., according to the explanations on pages 31f, a test set
consisting of three protons is needed to realise electric charge equalisation at M = 2. But
this test set can be „used“ in different ways; for example sequentially, seen from the
standpoint of a single proton, but as many times as there are protons in the test set, or
synchronically from the perspective of the whole test set with all its protons; that would
correspond to the situation at M =1: All elements of the test set are virtually isochronic and
thus inexistant for each other, because merely the rest of the universe acts on the test set,
not the elements of the test set themselves.

Not the sequential, but the synchronic case shall be examined here. At M = 2 the tree
protons which were already thoroughly discussed above are quasi disassembled (without
destroying the set−theoretical structure of those three protons defining the test set). In all
elements of the test set as well in the elements of these elements etc., 3 times 18
elements, i.e. epsilons, can be found, what results in a totality of 54 epsilons. Μ is then
equal to

[MUn2 − MTest2(vTest2=0)]

(i.e. universal mass minus mass of all epsilons in the test set), 
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where

      MTest2(vTest2=0) = 54 mε2 . ( 116 )

With

EUn2 = MUn2 c² ( 117 )

(96.1) results in

MUn2 = 84 mε2 ; ( 96.2 )

and in the special case of the Reissner−Nordström metric, the Kerr−Newman equation for
the static boundary at M = 2 has to be written as follows:

        G       G²      G  ½

RStat2 = [ MUn2 − MTest2(vTest2=0) ] ·   +   [ MUn2 − MTest2(vTest2=0) ]² ·   − [Q2]² ·       ;
         c²       c4         c4

( 118 )

here, Q2 = 3 e2*, because the equivalent of three protons including their electric charge is
contained in the test set − in order to accomplish charge equalisation, the rest of the
world, i.e. the Black Hole has to bear three elementary electric charges with the opposite
algebraic sign:

         G G²  G    ½

RStat2 = [ 84 − 54 ] · mε2 ·   +   [ 84 − 54 ]² · (mε2)² ·   − 3² · e2*² ·        ;
          c² c4   c4

        G         G²         G    ½

RStat2 = 30 · mε2 ·   +   30² · (mε2)² ·   − 9 · e2*² ·        ;
         c²         c4               c4

with (42):

        G         G²         G²   ½

RStat2 = 30 · mε2 ·   +   900 · (mε2)² ·   − 9 · 36 · (mε2)² ·        ;
         c²         c4                c4
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        G         G²      G²   ½

RStat2 = 30 · mε2 ·   +   900 · (mε2)² ·   − 324 · (mε2)² ·        ; ( 118.1 )
         c²         c4          c4

        G         G²   ½

RStat2 = 30 · mε2 ·   +   576 · (mε2)² ·        ;
         c²         c4

        G     G

RStat2 = 30 · mε2 ·    + 24 · mε2 ·   ;
        c²     c²

        G

RStat2 = 54 · mε2 ·    ; ( 118.2 )
        c²

as already explained earlier, this is half the distance between the test set and the
universal horizon. 2·RStat2 is the mean universal radius, i.e. the arithmetic average of the
doubled major and the doubled minor biggest possible error:

          G

        2·RStat2 = 108 · mε2 ·    ; ( 118.3 )
          c²

(115.2) with (118.1) for M = 2 :

        G

        ½·∆X2 = 30 · mε2 ·    ;
        c²

        G

  ∆X2 = 60 · mε2 ·    ; ( 118.4 )
        c²

with (44):

        G

  ∆X2 = 60 · Eε2 ·    ; ( 118.5 )
        c4
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and, deduced also from (115.2) and (118.1) for M = 2 :

  G²

     ¼·(∆z2)² = 324 · [Eε2]² ·    ;
  c8

       G²

         (∆z2)² = 4 · 324 · [Eε2]² ·    ;
       c8

    G²

         (∆z2)² = 1296 · [Eε2]² ·    ; / √

    c8

(only errors with a positive value:)

        G

   ∆z2 = 36 · Eε2 ·    ; ( 118.6 )
        c4

because the smallest possible error does not refer to a particle with three elementary
charges, but only to one with a single such charge, the above result must be divided by
three:

    G

     1/3 · ∆z2 = ∆z’2 = 1/3 · 36 · Eε2 ·    ;
    c4

        G

  ∆z’2 = 12 · Eε2 ·    ; ( 119 )
        c4

the test set has a certain physical extent. In the most unfavourable case, its centre of
gravity is in the minor biggest distance to the universal equator, while in the most
favourable case, it lies in the major biggest distance to it. In the least favourable case, the
test set is short of being sucked into the Black Hole, and in the opposite case it barely
touches the event horizon of the Hole. Both cases represent the biggest possible
divergencies from the mean orbit of the test particle around the Black Hole, i.e. its static
boundary, and these said divergencies are described by the second solution of the
Reissner−Nordström equation, this special case of the Kerr−Newman equation discussed
here, which admittedly had been withheld by the author up to now; this result is also called
the „Cauchy horizon“ of the electrically charged Black Hole:

     G G²  G    ½

r−2 = [ MUn2 − MTest2(vTest2=0) ] ·   −    [ MUn2 − MTest2(vTest2=0) ]² ·   − 9 e2*² ·        ;
      c² c4  c4 
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with (42), (44), (96.2), (116) and (117)

  G    G

r−2 = 30 · Eε2 ·   − 24 · Eε2 ·     ;
   c4      c4 

G

r−2 = 6 · Eε2 ·    ;
c4

and that’s nothing else as half of the smallest possible error according to (119) :

 G

   ½ · ∆z’2 = 6 · Eε2 ·    ; ( 119.1 )
 c4

well, it’s absolutely comprehensible that the reader asks himself now what half of
something smallest possible might possibly be?!? A smallest possible error cannot be
smallest possible any more if it can be cut in half. But there’s a surprisingly simple answer
to that: The static boundary corresponds to a mean statistical value, and r−2 is its deviation
maximum; in fact, the test particle is always on an orbit around the Black Hole with a
radius of either ∆X2 or ∆x2, but the distance is never equal to RStat2 − this variable has a
purely statistical meaning.

(119) is now equated with (114.1), simply because the smallest possible error is nothing
else than σ as defined by Eddington:

      ch      G

   = 12 · Eε2 ·    ; ( 119.2 )

  12 · Eε2      c4

transformed, the root extracted and limiting oneself to the positive solution:

 Eε2 =  1/12 · (ch / G)½
· c² ; ( 119.3 )

with (62.1) :

 Ep2(vp2=0) = 12 · 1/12 · (ch / G)½
· c² ;

 Ep2(vp2=0) = (ch / G)½
· c² ; ( 119.4 )

with (62) :

mp2(vp2=0) = (ch / G)½
 ; ( 119.5 )
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that’s the Planck mass! This is noteworthy insofar that at M =1, the mass of the electron is
also equal to the Planck mass. The difference consists in the fact that me1 is moving and
mp2(vp2=0) is a mass at rest.

(119.3), (42) and (44) yields the Sommerfeld fine structure constant M = 2; the two last−
mentioned equations give

e2*²

α2 :=   = 36 (Eε2)² G  c−5 h−1 ; ( 120 )
         c h

with (119.3):
  α2 = ¼ ; ( 42.1 )

  α2 = 0.25 ; ( 42.2 )

          1/α2 = 4 ; ( 42.3 )

(96.2) yields with (44) and (119.2)

          EUn2 = 84/12 · (ch / G)½
· c² ;

          EUn2 = 7 · (ch / G)½
· c² ; ( 96.3 )

this results with (117) in the total mass of the universe:

          MUn2 = 7 · (ch / G)½
 ; ( 96.4 )

Because at M =1 (15), (16.1) and (26.2) yield the following mass of the universe

          MUn1 = 4 · (ch / G)½
,

by raising M from 1 to 2, a relative mass accretion of

                  ∆MUn2    MUn2 − MUn1

        =  
        MUn1         MUn1

       ∆MUn2   7 − 4
        =   ;
        MUn1     4

      ∆MUn2

        = 75 % ( 96.5 )
        MUn1

is the result.
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And now it can be stated with some eligibility that two times the major biggest error is
identical to the extent of the universe, whose radius can simply be called RUn ; for M = 2 :

         RUn2 := 2 · ∆X2 ; ( 121 )

that yields with (118.4) :
       G

          RUn2 = 120 · Eε2 ·    ;
       c4

and with (119.3) :

         G

RUn2 =  120/12 · (ch / G)½
· c² ·   ;
         c4

RUn2 =  10 · (Gh / c³)½
 ; ( 121.1 )

now the last important thing that’s missing here is the smallest possible error; it is
calculated by using the equations (114.1), (114.2) and (119.3) :

ch
   σ2 =    ;

   12 · 1/12 · (ch / G)½
· c²

that yields

   σ2 = (Gh / c³)½
 ; ( 122 )

hence, at M = 2, the amplitude of the proton’s Compton wavelength is equal to the Planck
length.

Now the velocities of the electrons shall be calculated for this model at M = 2. Some
preceding considerations are necessary.

To begin with, the question how fast the hydrogen atoms move if their main quantum
number n equals 2 has to be asked.

At this point, the reader is reminded that electrons composed of varicolored rishons have

a mass energy of 3·Eε2, and electron composed of mixed colored rishons have a mass

energy of 4·Eε2; the sole electron that is composed of unicolored rishons has a mass

energy of 6·Eε2. The electrons of the hydrogen atoms without a test particle are composed
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of mixed rishons at n = 2, and this is attended by the fact that they cannot possibly reach

a state with more mass energy; 6·Eε2 is barred for them, because the single possible such
quantum state is already reserved for the electron of the test particle. A lower energy
state, which theoretically could be reached by slowing down the hydrogen atoms, would

though correspond to an electron mass energy of 3·Eε2, like it could already be realised in
the case concerning the electrons being components of the hydrogen atoms without test
particle and with a main quantum number n =1. Would this state correspond to the
hydrogen atoms without a test particle and a main quantum number n = 2 being at rest
relative to the test proton, this should come along with two superimposing quantum states;
on the one hand, the hydrogen atom would be at rest, its electron orbiting on a radius with
n = 2, and on the other hand, its electron would orbit at n =1 on the Bohr radius, while the
hydrogen atom would move around with a certain velocity bigger than zero. In the excited
state, the total impetus of the hydrogen atom would be zero, while in its ground state, it 

would move around with a certain velocity, slower than the velocity of light but unequal to
zero. The total impetus though would have to be the same for both states, because no
photon or other quantum is emitted in order to reach the other appropriate state; and
because this is not the case, it’s a plain violation against the laws of conservation of
momentum. Conclusion: At n = 2 both hydrogen atoms whose protons aren’t test particles
have to be at rest relative to the test proton!

That gives the author the opportunity to present a very simple scenario: In both hydrogen
atoms being at rest relative to the test particle, as "seen" from the latter, the proton as well
as the electron rotate with the same angular speed ωH2 around a common centre of
gravity. According to equation (81.1), the proton moves around with 5/13 of the velocity of
light, what lies definitively already in the relativistic range.

Therefore the following equation applies:
        r2(p+;n=2) · ωH2

vp2(n=2) =   ; ( 123 )

       ( r2(p+;n=2) · ωH2 )²      
½

 1 + 
c²

and also this one:
r2(H;e−;n=2) · ωH2

       ve2(H;n=2) =   ; ( 124 )

      ( r2(H;e−;n=2) · ωH2 )²     
½

1 + 
c²

the orbit radii rp2(n=2) and re2(H;n=2) arise from the particles’ wavelength. The protons
energy is, if it’s a component of a hydrogen atom and not a test particle,

         Ep2(n=2) = h · νp2(n=2) ( 125 )

if its main quantum number n = 2.
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With

c
         νp2(n=2) =   , ( 126 )

     λp2(n=2)

where λp2(n=2) is the Compton wavelength of the excited proton, (125) results in

       c
        Ep2(n=2) = h ·   ; ( 125.1 )

 λp2(n=2)

with
    2 · λp2(n=2) = 2π · r2(p+;n=2) ( 127 )

(125.1) yields
  2 c h

        Ep2(n=2) =   ; ( 125.2 )
     2π · r2(p+;n=2)

with (103):
       2 c h

        Ep2(n=2) =   ; ( 125.3 )
    r2(p+;n=2)

rp2(n=2) is the radius of the protons orbit around the common centre of gravity with the
electron at n = 2.

Equation (64.2) with (125.3):

       2 c h
      r2(p+;n=2) =   ; ( 125.4 )

     11 · Eε2

now, (123) and (124) have to be solved for (ωH2)² and then equated with each other.

(123) yields

    [r2(p+;n=2) · ωH2]²   [r2(p+;n=2) · ωH2]²
     = 1 +    ;

[vp2(n=2)]² c²

1
 (ωH2)² =    ; ( 123.1 )

    1             1
    [r2(p+;n=2)]² ·      − 

        [vp2(n=2)]²  c²
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and in the same way, (124) yields

       1
     (ωH2)² =    ; ( 124.1 )

    1  1
         [r2(H;e−;n=2)]² ·      − 

      [ve2(H;n=2)]²       c²
   !

(123.1) = (124.1):

      1    1       1   1
[r2(H;e−;n=2)]² ·      −     = [r2(p+;n=2)]² ·      −      ;

        [ve2(H;n=2)]²    c²          [vp2(n=2)]²   c²

solved for [ve2(H;n=2)]² :

1
     [ve2(H;n=2)]² =   ;

  r2(p+;n=2)   
2

1        1           1
    ·     −     + 
r2(H;e−;n=2)      [vp2(n=2)]²       c²           c²

the root is extracted; the velocity of the electron bears a positive arithmetic sign:

1
        ve2(H;n=2) =   ;

 r2(p+;n=2)    
2

1        1           1     
½

    ·     −     + 
r2(H;e−;n=2)      [vp2(n=2)]²       c²           c²

this with (81.1), (107.3) and (125.4):
1

        ve2(H;n=2) =   ;

  2/11    
2

   1       1          1     
½

    ·     −     + 
   1/2        [5/13]² c²      c²          c²

1
        ve2(H;n=2) =   ;

   4    
2          

13²    1       1     
½

    ·     −     + 
  11         5² c²    c²       c²
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     1
        ve2(H;n=2) =   ;

  16
              

169    1       1     
½

    ·     −     + 
 121        25 c²    c²       c²

     1
        ve2(H;n=2) =   ;

  16
              

169 − 25   1     
½

    ·       + 
 121        25 c²   c²

         1
        ve2(H;n=2) =   ;

  16
            

144   1     
½

    ·       + 
 121      25 c²   c²

   1
        ve2(H;n=2) =   ;

   2304 1     
½

  + 
 3025 c² c²

   1
        ve2(H;n=2) =   ;

 2304 + 3025     
½


     3025 c²

3025½

        ve2(H;n=2) =   · c ;
5329½

         55
        ve2(H;n=2) =   · c ; ( 123.2 )

         73
numerically:

          ________
        ve2(H;n=2) = 0.75342465 c . ( 123.3 )
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So that’s the velocity of the electrons in those hydrogen atoms not containing a test
particle at n = 2.

With (84.3) the rest energy of the electron may be calculated as follows:

         Ee2(ve2=0) = 4 Eε2 · [2 − (1 − (55/73)²)−½]−¹
;

 Ee2(ve2=0) = 4 Eε2 · [2 − (1 − 3025/5329 )−½]−¹
;

 Ee2(ve2=0) = 4 Eε2 · [2 − (2304/5329 )−½]−¹
;

 Ee2(ve2=0) = 4 Eε2 · [2 − (5329/2304 )½]−¹
;

 Ee2(ve2=0) = 4 Eε2 · [2 − 73/48 ]−¹
;

 Ee2(ve2=0) = 4 Eε2 · [48/(96−73)] ;

 Ee2(ve2=0) = 4 Eε2 · [48/23] ;

192

 Ee2(ve2=0) =   · Eε2 ; ( 84.5 )
 23

numerically:

 Ee2(ve2=0) ≈ 8.3478260869565217391 Eε2 ; ( 84.6 )

or  Ee2(ve2=0) = 88/23 Eε2 ; ( 84.7 )

that’s the mass of an electron at M = 2 if it’s located at the universal antipole of the test
particle.

With (84.4), (123.2) yields:
  55

  ve2 =    · c ; ( 123.4 )
  73

with (84.5), (94.2) is written as follows:

       6 · Eε2 = (192/23) · Eε2 · [2 − (1 − (ve2(n=2)/c)²)−½] ;
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138 = 192 · [2 − (1 − (ve2(n=2)/c)²)−½] ;

    138/192 =  2 − (1 − (ve2(n=2)/c)²)−½
 ;

(1 − (ve2(n=2)/c)²)−½
 = 2 − 138/192 ;

(1 − (ve2(n=2)/c)²)−½
 = (384−138)/192 ;

   (1 − (ve2(n=2)/c)²)½
 = 192/246 ;

   (1 − (ve2(n=2)/c)²)½
 = 32/41 ; /squared

  1 − (ve2(n=2)/c)² = 1024/1681 ;

        (ve2(n=2)/c)² = (1681−1024)/1681 ;

        (ve2(n=2)/c)² = 657/1681 ;

        (ve2(n=2)/c)² = (9·73)/1681 ;

extracting the root:

             ve2(n=2)/c = 3·73½/41 ; ( 94.4 )
or

     ve2(n=2) = (3/41) · 73½ · c ; ( 94.5 )
numerically

     ve2(n=2) ≈ 0.625171005754941305 c ; ( 94.6 )

what’s left to combine is (88.3) with (84.5):

          192/23 · Eε2 =  3 Eε2 · [ 2 − (1 − (ve2(H;n=1)/c)²)−½]−¹
;

         64/23 = [ 2 − (1 − (ve2(H;n=1)/c)²)−½]−¹
;

         23/64 = 2 − (1 − (ve2(H;n=1)/c)²)−½
 ;

        (1 − (ve2(H;n=1)/c)²)−½
 = (128−23)/64 ;

           (1 − (ve2(H;n=1)/c)²)½
 = 64/105 ; /squared
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          1 − (ve2(H;n=1)/c)² = 4096/11025 ;

     (ve2(H;n=1)/c)² = (11025−4096)/11025 ;

     (ve2(H;n=1)/c)² = 6929/11025 ;

the root is extracted; now, as a positive value, the electron velocity is

          ve2(H;n=1)/c = (13/105) · 41½ ; ( 88.4 )
modified:

             ve2(H;n=1) = (13/105) · 41½ · c ; ( 88.5 )
or, for example:

             ve2(H;n=1) = [13/(1·3·5·7)] · 41½ · c ; ( 88.6 )
numerically:

             ve2(H;n=1) ≈ 0.79276776272978126592 c ; ( 88.7 )

The authors assumption is that, if their main quantum number is equal to 1, the hydrogen
atoms without a test particle are at rest, just as they are in their excited state. After all, the
momentum conservation argument applies also in this case. And the electrons built of
specific rishons are unable to move with any other than their specific speed (though the
direction of the velocity vectors may differ); what’s more, they cannot possibly have two
different velocities at the same time!

By the way, the author assumes that

  ve2(H;n=1) ≥  ve1

could be a K.O. criterion for this cosmological model!

Now, what’s left to accomplish is the determination of the kinetic energies of all particles at
M = 2. Those of the protons are already known [equation (80.2)]. For the electron on the
Bohr radius around the test particle, equation (90) applies; with (84.5) and (88.4):

      Ekin2(H;e−;n=1) = (192/23) · Eε2 · [(1 − ((13/105) · 41½)²)−½
− 1] ;

      Ekin2(H;e−;n=1) = (192/23) · Eε2 · [(1 − (169/11025) · 41)−½
− 1] ;

      Ekin2(H;e−;n=1) = (192/23) · Eε2 · [((11025 − 6929)/11025)−½
− 1] ;

      Ekin2(H;e−;n=1) = (192/23) · Eε2 · [(4096/11025)−½
− 1] ;

      Ekin2(H;e−;n=1) = (192/23) · Eε2 · [(11025/4096)½
− 1] ;

      Ekin2(H;e−;n=1) = (192/23) · Eε2 · [105/64− 1] ;

      Ekin2(H;e−;n=1) = (192/23) · Eε2 · [(105−64)/64] ;
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      Ekin2(H;e−;n=1) = (192/23) · Eε2 · (41/64) ;

      Ekin2(H;e−;n=1) = (3·41/23) · Eε2 ;

      Ekin2(H;e−;n=1) = (123/23) · Eε2 ; ( 90.1 )

      Ekin2(H;e−;n=1) ≈ 5.34782608695652173913 · Eε2 ; ( 90.2 )

or       Ekin2(H;e−;n=1) = 58/23 · Eε2 ; ( 90.3 )

and for the electron on the outer, 2nd orbit around the test particle, equation (94) applies.
With (84.5) and (94.4) one gets

         Ekin2(e−;n=2) = (192/23) · Eε2 · [(1 − (3·73½/41)²)−½
− 1] ;

         Ekin2(e−;n=2) = (192/23) · Eε2 · [(1 − 9·73/1681)−½
− 1] ;

         Ekin2(e−;n=2) = (192/23) · Eε2 · [(1 − 9·73/1681)−½
− 1] ;

         Ekin2(e−;n=2) = (192/23) · Eε2 · [(1 − 657/1681)−½
− 1] ;

         Ekin2(e−;n=2) = (192/23) · Eε2 · [((1681− 657)/1681)−½
− 1] ;

         Ekin2(e−;n=2) = (192/23) · Eε2 · [(1024/1681)−½
− 1] ;

         Ekin2(e−;n=2) = (192/23) · Eε2 · [(1681/1024)½
− 1] ;

         Ekin2(e−;n=2) = (192/23) · Eε2 · [(1681/1024)½
− 1] ;

         Ekin2(e−;n=2) = (192/23) · Eε2 · [(41/32)−1] ;

         Ekin2(e−;n=2) = (192/23) · Eε2 · [(41−32)/32] ;

         Ekin2(e−;n=2) = (192/23) · Eε2 · (9/32) ;

         Ekin2(e−;n=2) = (6/23) · Eε2 · 9 ;

         Ekin2(e−;n=2) = (54/23) · Eε2 ; ( 94.7 )

numerically:

         Ekin2(e−;n=2) ≈ 2.34782608695652174 Eε2 ; ( 94.8 )
or

         Ekin2(e−;n=2) = 28/23 · Eε2 ; ( 94.9 )
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for the electrons of the hydrogen atoms at n = 2 which do not contain protons being test
particles, equation (86) yields with (84.5) and (123.2):

     Ekin2(H;e−;n=2) = (192/23) · Eε2 · [(1 − (55/73)²)−½
− 1] ; 

     Ekin2(H;e−;n=2) = (192/23) · Eε2 · [(1 − (3025/5329))−½
− 1] ; 

     Ekin2(H;e−;n=2) = (192/23) · [((5329−3025)/5329)−½
− 1] · Eε2 ;

     Ekin2(H;e−;n=2) = (192/23) · [(2304/5329)−½
− 1] · Eε2 ;

     Ekin2(H;e−;n=2) = (192/23) · [(5329/2304)½
− 1] · Eε2 ;

     Ekin2(H;e−;n=2) = (192/23) · [(5329/2304)½
− 1] · Eε2 ;

     Ekin2(H;e−;n=2) = (192/23) · [73/48 − 1] · Eε2 ;

     Ekin2(H;e−;n=2) = (192/23) · ((73− 48)/48) · Eε2 ;

     Ekin2(H;e−;n=2) = (192/23) · (25/48) · Eε2 ;

     Ekin2(H;e−;n=2) = (4·25)/23 · Eε2 ;

     Ekin2(H;e−;n=2) = (100/23) · Eε2 ; ( 86.1 )
numerically:

     Ekin2(H;e−;n=2) ≈ 4.34782608695652173913 · Eε2 ; ( 86.2 )
or

     Ekin2(H;e−;n=2) = 48/23 · Eε2 ; ( 86.3 )

By the way, that’s also the kinetic energy of the electron orbiting the test particle on the
Bohr radius, i.e. Ekin2(e−).

The kinetic energies of all particles in the universe at M = 2 add up to Ekin2(Un); if all three
hydrogen atoms show the main quantum number n = 2, one has to deal with two protons

bearing a mass energy of 11·Eε2 and a kinetic energy of Ekin2(p+;n=2), whose two electrons

have a mass energy of 4·Eε2 and a kinetic energy of Ekin2(H;e−;n=2), the electron of the test

particle with a mass energy of 6·Eε2 and a kinetic energy of Ekin2(e−;n=2) as well as all

neutrinos/antineutrinos with a total mass energy of 12·Eν2 and a kinetic energy of all those

neutrinos/antneutrinos amounting to Ekin2(ν°). The test proton stays at rest; it has a mass

energy of 12·Eε2, but no kinetic energy.
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That may be written as follows:

Ekin2(Un) = 2 · Ekin2(p+;n=2) + 2 · Ekin2(H;e−;n=2) + Ekin2(e−;n=2) + Ekin2(ν°) ; ( 128 )

in contrast to the other ones, the last term hasn’t been calculated yet; that shall be done
now:

Ekin2(ν°)  = E kin2(Un) − 2 · Ekin2(p+;n=2) − 2 · Ekin2(H;e−;n=2) − Ekin2(e−;n=2) ; ( 128.1 )

with (80.2), (86.1), (97.2) and (94.7) that results in

Ekin2(ν°)  = 42 · E ε2 − 2 · Eε2 − 2 · (100/23) · Eε2 − (54/23) · Eε2 ;

Ekin2(ν°)  = 40 · E ε2 − (200/23) · Eε2 − (54/23) · Eε2 ;

Ekin2(ν°)  = (920/23) · E ε2 − (200/23) · Eε2 − (54/23) · Eε2 ;

Ekin2(ν°)  = (920/23) · E ε2 − (254/23) · Eε2 ;

Ekin2(ν°)  = ((920 −254)/23) · Eε2 ;

Ekin2(ν°)        666
            =   ; ( 128.2 )

   Eε2           23

The above, fairly ominous quotient is the kinetic energy of all neutrinos/antineutrinos
divided by the energy of a single epsilon at M = 2. Because the mass energy of all these
particles is 36 times the epsilon energy and 666/23 ≈ 28.9565217391304347826, the
binding energy of all neutrinos/antineutrinos is approximately

 −28.9565217391304347826·Eε2

(negative because of the virial equation), and therefore the energy of the rest mass of all

neutrinos/antineutrinos [what sums up to 12·Eν2(vν2=0)] is

36 + 28.9565217391304347826 ≈ 64.9565217391304347826

epsilon energies (exactly 6422/23·Eε2). The binding energy is negative because the
neutrinos/antineutrinos also circle around the test particle; centrifugal force and
gravitational attraction are in equilibrium. But it has to be emphasised now that this rest
energy is not necessarily portioned out in equal amounts to all neutrinos and antineutrinos
[logically true because the kinetic energy Ekin2(ν°) might also differ between
neutrinos/antineutrinos of varicolored, unicolored and mixed colored structure, simply
because they could move with different velocities, what would depend on their seperation
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distance from the test particle]. But the author renounces an investigation in this regard,
because in his opinion, this is an aspect of his cosmological model being of less
importance; the mathematical investment might possibly be considerable and not at least
commensurate.

Now at the latest, a point is reached where the reader should say goodbye to the pet idea
that the concept of motion corresponds to something real. Tacitly the author already bade
farewell to two of the three properties of epsilons as he traced gravitational and
electromagnetic interactions back to the basic laws of set theory; now it becomes obvious
that the third property is also obsolete: Velocity. Epsilons don’t have speed; aside from the
positive object in the test particle and the electron, i.e. the element bearing a negative
electric charge, they change their relative positions by performing quantum leaps; this is
equally true concerning such changes in translative as well as cyclic time. The terms
„energy“ (ergo also „mass“), „electric charge“ and „velocity“ were and will be used for the
sole purpose of presenting descriptive terms to the reader, i.e. for the sake of
mathematical simplicity. In order to achieve better comprehensibleness, the author mostly
tries to avoid a strict quantum mechanical elocution. Perhaps a subsequent paper will deal
with this matter again, but then on a mathematically abstract level.

Abb. 9 from top to bottom: u, c and t quark; „+“ stands for +1/6th,       

„−“ for −1/6th of the elementary electric charge         
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At the end of this chapter, the question shall be discussed how this model could possibly
explain the fact that there are three generations of quarks. The author wants to depict this
by confronting the reader with the schematic images of the up, charm and top quark in
fig. 9 and with those of the down, strange and bottom quark in fig. 10.

The above as well as those „pieces of cake“ shown on the next page are representations
of the quarks in fig. 4, 5, 6 and 7 and may be „inserted“ there.

At M = 2 the three possible energy states of the electrons which depend on the main
quantum number cannot yet be distinguished from the three generations (electron, muon
and tauon); quite in contrast, the neutrinos do indeed exist in three generations (of uni−,
vari− and mixed colored composition), but if these states differ energetically from each
other so far wasn’t investigated in this paper.

Fig. 10 from top to bottom: d, s and b quark; „+“ stands for +1/6th,     

„−“ for −1/6th of the elementary electric charge         
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Chapter III.

In spite of the fact that such an approach is in complete contradiction to the results so far
obtained by the previous derivation, the author wants to depict both states of the proton at
M =1 as follows: The reader should try to imagine that the electron could also be chosen
to be the test particle without becoming an antiproton; under these premises, how would
the proton look from the point of view of this electron?

Using this approach, the proton has still a structure defined by its three elements; two of
these bear a positive and one a negative electric charge. One could think of this as an
isosceles triangle, alternating between lying on one of its sides and standing on one of its
tips:

Fig. 11 and 12: Both states of the proton at M =1

If both of these triangles are put one upon another in a way that they get a common
barycentre, a Star of David is created; the author found a very nice representation on
Wikipedia:

Fig. 13: Star of David
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In a strict sense the element with the negative charge in fig. 11 and 12 wouldn’t move in
relation to the electron, because as the defining element of the electron it is identical with
the only element of the proton bearing a negative charge; it must therefore behave exactly
like it. This flaw in those three illustrations shown above will be casually ignored here,
otherwise the Star of David would not only quiver most unelegantly in three possible
directions, and not its barycentre, but the element bearing the negative electric charge
would be the reference centre; in consequence, the Star of David would be history here.
Well, luckily, not the electron but the proton is able to be a test particle in this universe,
therefore nobody has to struggle with such unaesthetic aspects...

As it was already mentioned above, this was only an attempt of the author to explain the
issue as vividly as possible.

Back to more serious aspects of the model. One of those is the fact that the model
supplies a radius of the universe at M =1 equal to one Planck length, whereas at M = 2,
according to equation (121), the universe has already expanded in a way that its radius
equals twice the major biggest possible error, i.e. ten Planck lengths [the antipole of the
universe at M = 2 is thus 10 Planck lengths away from the test particle; see also (121.1)].
What’s really notable: Between both of those extents there are no intermediary states! At
M = 2 the world looks as if 10 Planck times would have elapsed since the Big Bang, but
actually, in the context of the translative time dimension, the state at M =1 lasted one
Planck time and at M = 2 yet one more Planck time, so the experienced age of the
universe in translative time sums up to mere two Planck times.

That shows some similarity to the good ole cine film: Between the particular images on the
film there’s a dark feedthrough, but the spectator doesn’t notice that, because the film
images are projected on the canvas very rapidly one after another. After the Big Bang,
only two Planck times elapse, but the world already looks as if it were 10 Planck times old!
Notably in each respect, that’s what’s the most remarkable fact here.

But at this point, the author wants to lead the reader away from the Big Bang, back into
nowadays universe.

As already mentioned earlier, one of both solutions of the Reissner−Nordström equation is

 G       G²    G    ½

r− = [ MUn − MTest(vTest=0) ] ·   −    [ MUn − MTest(vTest=0) ]² ·   − (2M−1)² e*² ·        ;
  c²       c4        c4 

( 129 )
r− is called the Cauchy horizon.

Choosing the synchronic case, the biggest possible test set is defined by (2M−1) elements
(protons). The author deduces this, because at M =1, one single proton is the biggest
possible test set, whereas at M = 2, three synchronic protons are defining it, and because
the term (2M−1) defines for M ∈ IN all odd−numbered natural numbers and yields the
proton number in the biggest possible test set for both M =1 and M = 2, it follows that for
every M ∈ IN , the test is defined by an odd−numbered quantity of protons, i.e. (2M−1).
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For M =1 it was already shown in chapter I. that r−1 und RStat1, i.e. both solutions of the
Reissner−Nordström equation, are identical with r1 , and that yields according to (19.2)

        h
      r−1 = ___________. . ( 19.4 )

     me1 c

Equation (14.2) says that ß1, the quotient of mp1(vp1=0) and me1, is equal to 3; thus,
equation (19.4) yields:

  3 h
      r−1 =   ___________________ ; ( 19.5 )

      mp1(vp1=0) c

at M = 2, r−2 is half of the smallest possible error, according to (119), what may also be
written as

     h
      r−2 =   _____________________ , ( 119.6 )

      2 mp2(vp2=0) c

because of (119.3) and (119.5).

How big is r− today? That shall be investigated now.

For this purpose the author refers to equation (119.6) and introduces a variable k :

   k h
      r− =   _____________________ ( 119.7 )

      2 mp(vp=0) c

but as of now, for the sake of simplicity, the rest mass of the proton shall be written as mp

instead of mp(vp=0). Then, (119.7) is written as follows:

      k h
     2 r− = ________ ; ( 119.8 )

     mp c

k shall be calculated now.

In analogy to (115.2), which yields Rstat , the following equation

         r− = ½·∆X − [¼·(∆X)² − ¼·(∆z)²]½ ( 115.3 )

yields the Cauchy horizon.
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Into (119.8):

  k h
________ = ∆X − [(∆X)² − (∆z)²]½ ; ( 115.4 )
 mp c

the preceding statements reveal that

 G
    ∆X = 2 · [ MUn − MTest(vTest=0) ] ·   ; ( 130 )

 c²

and

       G½

    ∆z = 2 · (2M−1) · e* · ____ ; ( 131 )
       c²

both equations into (115.4):

 k h     G        G²        G   
½

         ________ = 2 [MUn−MTest(vTest=0)]·    −  4 [MUn−MTest(vTest=0)]² ·  −4 (2M−1)²·e*² · ____      ;
          mp c     c²         c4             c4

that results in

 k h      G   k²h²         G
      2 ________ · 2 [MUn−MTest(vTest=0)]·  −  __________ = 4 (2M−1)²·e*² · ____ ;
          mp c    c² mp² c²               c4

substitution: k* :=  k / α ;  α :=  e*² / c h :

   2 k* e*²  G k*²e*4        G
  ____________ · 2 [MUn−MTest(vTest=0)] ·   −  __________ = 4 (2M−1)²·e*² · ____ ; / :e*²;
    mp c²  c² mp²c4              c4

      2 k*  G k*²e*²        G
 ____________ · 2 [MUn−MTest(vTest=0)] ·   −  __________  = 4 (2M−1)²·e*² · ____ ;
    mp c²  c² mp²c4              c4

and further transformations lead to

      G     G           e*²
4 · (2M−1)² · mp ·   −  4 k* · [MUn−MTest(vTest=0)] ·  + k*² · ________ = 0 ; ( 115.5 )

      c²     c²         mp c²
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under the premise that M »k* (what shall be proven later), and because it’s a case where
M »1, it has to be true that

 e*²
     ∆X » k* · ________ ;

          mp c²

      e*²
      rp := __________ ( 132 )

    2mpc²

is actually the so−called "classical proton radius", if the proton’s electric charge is evenly
spreaded over its spherical surface at a radius rp .12

To make this perfectly clear: The author knows without questioning it that this "classical
proton radius" lacks even the slightest physical relevance. More or less, it’s a mere
indication of size; after all, this model assumes that the proton has an inner structure, and
consequently, it cannot be an ideal sphere; that implies that the radius of the proton surely
isn’t equal to rp .

         !

Starting with equation (115.5) one gets with M −1=M (because M »1) :

         G      G
8 · M² · mp ·   −  2 k* · [MUn−MTest(vTest=0)] ·  = 0 ; / : (−2 G / c²) ;

         c²      c²

     k* · [MUn−MTest(vTest=0)] = 4 M² · mp ;

with Mtest(vTest=0) = (2M−1) · mp :
  4

 MUn − (2M−1) · mp =   M² · mp ;
  k*

      4
       · M² · mp + 2M · mp = MUn ;
     k*

  4
   M + 2  · M · mp = MUn ;
 k*

because of M »1 and M » k*, what still has to be proven:

       4
        · M · M · mp = MUn ;
      k*
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     4 MUn

       · M² =    ;
     k*         mp

k* · MUn

M² =    ;
 4 · mp

extracting the root:
  ½

       k* · MUn

 M =  ½ ·          ; ( 115.6 )
mp

and now the statement is certainly correct for all M »1, that

  ∆X
   2M − 1 =    ;

  2 r−

what leads to the simplified form

  ∆X
        2 M =         (a statement which also will be proven)

  2 r−

because of M »1. That can be justified in a very ostensive way:
There are (2M−1) protons in the test set, thus, because of M »1, approximately 2M. Each
of them has the time

2 r−

    2 ·   ,
 c

to "look" at the world, because the particle radius, i.e. its whereabouts uncertainty is equal
to 2 r− [also see the above remarks concerning equation (119.1)], and this doubled is
equal to its diameter; thus, the particle can be found in a range of ±2r−. And if this is
divided by the velocity of light in a vacuum, that yields the above time span.

The time the totality of all protons need to experience the effect of the world is obviously
the above time span multiplied by (2M−1), what corresponds approximately to 2M
because of M »1, and that’s nothing else as the totality of all available time in the
universe, in other words, the age of the world, the aeon:

        2 r−

       2 · (2M−1) ·   =  TUn ;
         c
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because of M »1 that yields
       2 r−

    4 · M ·   =  TUn ( 133 )
        c

If
        r−

         t− :=  , ( 134 )
        c

equation (133) yields

    2 c t− 
      4M ·   =  TUn ;

       c

transformed:
       TUn

      2M =    ; ( 133.1 )
       4t−

but TUn·c is the distance between the test set and the universal horizon, RUn. That is more
or less equal to twice the static boundary of the universe, RStat.

For M »1 it is true that Rstat ≈ ∆X, hence approximately the Schwarzschild radius of a Black
Hole with the total mass of the universe. Thus, (133.1) yields

       RUn

      2M =    ; ( 133.1 )
                   !        4r−

and with RUn= 2 · ∆X
       ∆X

      2M =    ; V q.e.d. ( 133.2 )
       2r−

into (115.3) :
      ∆X
      = ∆X − [(∆X)² − (∆z)²]½ ; ( 115.7 )
     2M

after various transformations the result is

       4M² − 4M² + 4M − 1
   (∆z)² = (∆X)² ·   ;

4M²
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and with  M »1
      (∆X)²

        M =   ; ( 135 )
      (∆z)²

the author finds it interesting that this equation is also valid for M =1, but not for M = 2.

(135) equalised with (115.6) :
         ½

  (∆X)²   k* · MUn

  = ½ ·          ; ( 135 )
  (∆z)²      mp

MUn » MTest(vTest=0) at M »1, therefore equation (130) becomes

       G
      ∆X = 2 · MUn ·   ; ( 130.1 )

       c²

hence

       c²
    MUn = ½ · ∆X ·   ; ( 130.2 )

       G

and with  M »1, (131) yields

G½

      ∆z = 4 · M · e* · ____ ; ( 131.1 )
c²

into (135) :
       ½

(∆X)²  k* · MUn

        = ½ ·          ;
          G½  2     mp

        4 · M · e* · ____ 
          c²

       ½
(∆X)²  k* · MUn

        = ½ ·          ;
G      mp

        16·M²·e*² · ____ 
c4
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with (115.6) :
       ³/2

(∆X)²   k* · MUn

            = 1/8 ·           ;
G      mp

      16 · e*² · ___

c4

with (130.1) :
       ³/2

(∆X)²  k* ∆X c²
            = 1/8 ·          ;

G  2 · mp G
      16 · e*² · ___

c4

       ³/2

(∆X)²  k* ∆X c²
            =                    ;

G  2 · mp G
        2 · e*² · ___

c4

solved for k*:

1/3

   8 · mp³ G³ (∆X)4 c8

      k* =             ;
4 · e*4 · G² · (∆X)³ · c6

1/3

      2 mp³ G ∆X c²
      k* =             ;

    e*4

             
1/3

      2 G ∆X c²
      k* = mp ·              ;

 e*4

reversing the substitution k* :=  k / α :
             

1/3

      2 G ∆X c²
  k / α = mp ·              ;

 e*4
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α :=  e*² / c h :
             

1/3

      2 α ∆X G
       k = mp ·              ; ( 135.1 )

 h ²

and here, the latest, most exactly known values for the variables are used in order to
calculate k numerically.

Those are

G = (6.67384 ± 0.00080) · 10−11 · kg−1 · m³ · s−2 ;13 ( 136 )
α = (7.29735256980 ± 0.00000000024) · 10−³ ;13 ( 137 )
h = (1.054571726 ± 0.000000047) · 10−34 · kg · m² · s−1 ;13 ( 138 )
mp= (1.672621777 ± 0.000000074) · 10−27 kg ;13 ( 139 )
∆X= ½ · RUn = ½ · (13.798 ± 0.037) · 109 Ly = (6.5268 ± 0.0175) · 1025 m ;14 ( 140 )

and that yields with (135.1)
       k ≈ 2.9906859 ; ( 135.2 )

sure enough, that’s in the immediate vicinity of 3.

What’s left now is to take a closer look at k*; the above substitution was k* :=  k / α . With
(135.2) and (137) this yields

     k* ≈ 2.9906859 / (7.29735256980 · 10−³) ;

and the solution is
     k* ≈ 409.83163 . ( 135.3 )

One of the preconditions of these calculations was the statement that the image number
M would have to be much bigger than k*. Because of this very assertion it is also
necessary to calculate M. (135.2) yields with (119.8) and (133.2) :

       ∆X mp c
   2M ≈    ; ( 135.4 )

   2.9906859 h

with (140ff) and c = 2.99792458 · 108  m/s :

 6.5268·1025 m·1.672621777·10−27 kg·2.99792458·108 m/s

 2M ≈   ;
        2.9906859 · 1.054571726 · 10−34 · kg · m² · s−1

that results in
   M ≈ 5.1885 · 1040 ; ( 135.5 )

hence it is shown that M » k*. V q.e.d.
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Now k shall be calculated by using another approach. To this end, some preceding
explanations will hopefully help to clarify things a little bit.

At M =1, aside from the test set, i.e. the proton, there’s only one more particle, the
electron. In this universe, the latter is merely able to occupy just a single quantum state,
i.e. the one defined by a main quantum number n =1. This is so because the quantum
state characterised by a main quantum number n = 2, according to some previous
statements, corresponds to another universe, where the antiproton serves as a test set,
and in consequence, that universe contains mostly antimatter. In order to depict this in a
more transparent way, the radius of the universe at M =1 was deliberately set equal to the
radius of the sole electron’s orbit, whereas at M = 2 and above, the radius of the highest
possible electron orbit is somewhat smaller than the so−called universal radius, which is
the distance between the test particle and the universal horizon, the location of an
electron at rest.

Therefore the method of defining and describing the universe in this paper coincides
exclusively for all image numbers bigger than one, hence also for nowadays universe.

Henceforth, the author sets his focus again on the situation at M = 2. He takes a closer
look at the following equation:

 me2(n=2)           c h
           =    ; ( 141 )

  2·mmin2  [mp2(vp2=0)]² G

mmin2 is the mass of a colourless particle with the lowest possible mass energy also having
a rest mass bigger than zero, e.g. not a photon. At M = 2 it’s identified at once: It is the
neutrino; besides, in the case of a main quantum number n =1, there are also electrons in

the hydrogen atoms without a test particle having the same mass, i.e. me2(H;n=1) = 3·mε2 ;
see also equations (70) with (44).

Now the above equation (141) can easily be proven by using the adequate calculated

results for its different physical variables; equations (69) and (44) yield me2(n=2) = 6·mε2 ,

and equation (56.6) yields mp2(vp2=0) = 12·mε2 . Thus (141) may be written as follows:

      6·mε2 c h
              =    ;

    2·3·mε2    [12·mε2 ]² G

and with (119.3) as well as (44) this results in

      6·mε2      144·mε2²

              =    ;

    2·3·mε2      [12·mε2 ]²
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finally, that gives

      6·mε2      144·mε2²

              =    ;

      6·mε2      144·mε2 ²

     1 = 1; V q.e.d.

It will now be shown below that (141) is also valid in the contemporary universe, i.e. in this
form:

  me(nmax)    c h
           =    . ( 141.1 )

   2·mmin  mp² G

In analogy to mmin2 (i.e. mmin at M = 2), mmin is (at M »1) the mass of a colourless particle
having the lowest possible mass energy whose rest mass is bigger than zero, i.e. not a
photon; me(nmax) is the mass of the electron on its highest possible orbit (whose radius is
only negligibly smaller than RUn). But de facto me(nmax) is equal to me, because so far out,
the negative binding energy is vanishingly small:

me    c h
        =    . ( 141.2 )
       2·mmin  mp² G

The main quantum number nmax is calculated as follows:14

½
       RUn · me · e*²

nmax =        ; ( 142 )
              h²

numerically with the value for RUn from equation (140) :
 ½

 2·6.5268·1025·9.10938291·10−31·(1.51890663·10−14)²
nmax ≈         ;

    (1.054571726·10−34 )²

nmax ≈ 1.570596 · 1018 ; ( 142.1 )

and now, mmin shall be calculated.

First,
           Emin = mmin c² ; ( 143 )

and furthermore,

           Emin = h · νmin ; ( 144 )
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in addition,

 νmin = c / λmax ; ( 145 )

Emin is the lowest possible mass energy of a particle (with zero rest mass); νmin is the
frequency of a photon with the energy Emin , and λmax is th longest possible wavelength in
the universe:

λmax = 2 · π · 2 · ∆X ; ( 146 )

this into (145) :

 νmin = c / (4·π·∆X) ; ( 145.1 )

and that into (144) :

           Emin = h · c / (4·π·∆X) ;

h = 2π·h :

 c h
           Emin =   ; ( 144.1 )

2∆X

into (143) :

 c h
      mmin c² =   ;

2∆X

    h
mmin =   ; ( 143.1 )

2·∆X·c

being an equation only valid for M »1, (135.1) yields

            k³        2·α·∆X·G
            =   ;
           mp³        h²
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       h²  k³
  ∆X =   ; ( 135.6 )

   2·α·mp³·G

this into (143.1) :
h · α · mp³ · G

mmin =  ;
   h² · k³ · c

                 mmin   α · mp² · G
            =  ;

mp     k³ · h · c

mp   k³     c  h
            =   ·  ; ( 143.2 )
                 mmin   α    mp² G

and this together with (141.2) :

mp   k³       me

            =   ·  ; ( 141.3 )
                 mmin   α    2 mmin

reducing mmin and transforming the resulting equation a little bit:

       mp        k³
α ·   =  ;
       me        2

and with the definition ß :=  mp / me

        k³
       α ß =  ; ( 141.4 )

        2
that yields the cubic root

1/3

k =  ( 2 α ß )   ; ( 141.5 )
with

       1
α ≈ 
      137.035999074

and ß ≈ 1,836.15267245

the result is this numerical value:

k ≈ 2.99250376016638 ; ( 141.6 )
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error estimate:
    ½

       ∆k         1/3·(∆α)²       1/3·(∆ß)²
       =    +       ;
       k   α²   ß²

with the values from appendix A:
½

       ∆k  1/3·(0.0000000024)²         1/3·(0.00000075)²
       ≈     +          ;
       k   (7.2973525698)²        (1,836.15267245)²

       ∆k     ½
       ≈ ( 3·10−20 + 5·10−20 )     ;
       k

       ∆k ½
       ≈ ( 8·10−20 )     ;
       k

       ∆k
       ≈ 2.8 · 10−10 ;
       k

that yields with (141.6)

         ∆k ≈ 2.992503760166 · 2,8 · 10−10 ;

         ∆k ≈ 8 · 10−10 ;

and the result is

k = 2.9925037602 ± 0.0000000008 ( 141.7 )

or, a little bit more clearly represented,

k = 2.9925037602(8) ; ( 141.8 )

(135.3) with (141.5) :
         h² · ß

        ∆X =   ;
       mp³ · G

with ß := mp / me :
     h²

        ∆X =   ; ( 135.7 )
       mp² · me · G
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as ever, the author sets RUn equal to 2·∆X ; with the values from appendix A together with
(135.7) :

2 · (1.054571726·10−34 )² · m
        RUn ≈  ;

       (1.672126777·10−27 )² · 9.10938291·10−31 · 6.67384·10−11

        RUn ≈ 1.30851616 · 1026 m ; ( 135.8 )

that’s also equal to

        RUn ≈ 13.831405 · 109 Ly ; ( 135.9 )

error estimate:
     ½

      ∆RUn      2(∆h)²     2(∆mp)²     (∆me)²      (∆G)²
        =   +  +  +      ;
       RUn h ²     mp²           me²     G²

with the values from appendix A :
½

∆RUn      2·(0.000000047)²    2·(0.000000074)²       0.00000040²    0.00080²
  =   +  +  +       ;
 RUn     1.054571726²      1.672126777²       9.10938291²    6.67384²

    ∆RUn

      ≈ [ 4 · 10−15 + 4 · 10−15  + 2 · 10−15 + 1.4 ·10−8 ]½ ; 
     RUn

    ∆RUn

      ≈ 0.00012 ; ( 135.10 )
     RUn

together with RUn from (135.9), that yields

    ∆RUn ≈ 0.00012 · 13.831405 · 109 Ly ;
    ∆RUn ≈ 0.0017 · 109 Ly ;

the size of the universal radius may thus be expressed as follows:

     RUn = (13.8314 ± 0.0017) · 109 Ly ; ( 135.11 )

or      RUn = 13.8314(17) · 109 Ly ; ( 135.12 )

=>    ½ RUn = ∆X = 6.91570(83) · 109 Ly ;         ( 135.12.1 )

in metric notation:

   ½ RUn = ∆X = 6.5426(8) · 1025 m ;         ( 135.12.2 )
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and if the latter result is compared with the value in (140), it becomes obvious that it’s
much more concise; furthermore, the result in (135.12) lies well inside the boundaries of
the Planck Mission result for RUn equal to 13.798(37) times 109 light years15. Thus the
value of the age of the universe TUn := RUn / c is in perfect accordance with the error
estimates of the „Planck Space Observatory“ project15. Therefore, the author declares the
three assumptions underlying this model herewith as proven ; it’s obvious that the
model corresponds to the physical conditions in this universe. Especially the equations
(141.4) und (141.5) are now presented here as crucial findings in this paper:

 k³
α ß =  ; (für M ≥ 2) ( 141.4 )

 2

and

   1/3

    k =  ( 2 α ß )   ; (für M ≥ 2) ( 141.5 )

for M = 2 they confirm the value k =1, if ß is defined as the ratio of the proton rest mass
and the electron mass at nmax2=2 [and explicitly not the electron rest mass according to
equations (84.7) and (44)]; for M = 2, (141.5) yields with (42.2), (44), (62.1) and (69)

       1/3

   k2 =  ( 2 · 0.25 · 12/6 )   ;
       1/3

   k2 =  ( 4 · 0.25 )   ;

   k2 = 1 ;

what’s left now mmin itself. With the halved result for RUn from (135.8) which equals ∆X,
(143.1) yields

     1.054571726 · 10−34 · kg
mmin ≈   ;

 2 · ½ · 1.30851616 · 1026 · 2.99792458 · 108

mmin ≈ 2.68829132 · 10−69 · kg , ( 143.3 )

a tiny, really minute mass − in the contemporary universe, it’s the mass of a colourless
particle with the smallest possible mass energy having a rest mass bigger than zero.
Because this result doesn’t have any pertinence for the following calculations, the author
renounces to do an error estimate in this regard, but utters his suspicion that the first five
digits of the numerical value of  mmin could be correct.
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However, the author doesn’t claim to be able to make further statements concerning this
particle, i.e. if mmin could be a rest mass etc.

But it’s important to emphasise that (135.7) is also one of the most significant results in
this paper; nevertheless, the author transforms this equation a little bit using RUn = 2·∆X
and the amplitude of the Compton wavelength of the proton, i.e. Ac := lc / 2π = h / mpc :

    2π · RUn           ch
     =   ; ( f. M »1 ) ( 135.7.1 )
      2 · lc    mp · me · G

or with M p := (ch / G)½ :

     π · RUn     M p · M p

     =   ; ( f. M »1 ) ( 135.7.2 )
         lc     mp · me

what may also be written as follows:

    2π · ∆X         M p²
     =   ; ( f. M »1 ) ( 135.7.3 )
         lc     mp · me

and last but not least, for the sake of completeness, one more main result of the author’s
work, the equation for the Cauchy horizon of the universe:

         k h    
       ________  = ∆X − [(∆X)² − (∆z)²]½ ; ( 115.8 )
        mp c

What’s left now is to deduce the total mass of the universe.

To this behalf equation (130.2) will be used, together with the values for G from equation
(136), ∆X from (135.11.2) and c = 2.99792458 · 108  m/s :

        (2.99792458 · 108)²
MUn ≈ ½ · 6.5426 · 1025 ·   · kg ;

6.67384 · 10−11

MUn ≈ 4.40541 · 1052 · kg ; ( 130.3 )
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and the relative error quotient |∆MUn| /  MUn , whose numerator, for the sake of simplicity,
will not be written here as an absolute value, but rather as ∆MUn / MUn (after all, in the
context of this paper, all other errors have also been written as positive values), may be
calculated by the use of the following equation:

        ½
    ∆(∆X)²      ∆G²

          ∆MUn / MUn =     +       ; ( 147 )
    (∆X)²       G²

the numerical value of the velocity of light in vacuum, c, was codified 1983 by the 17th

General Conference on Weights and Measures in Sèvres, a suburb of Paris, as being
exactly equal to 299792458 meter per second; thus, simply by definition, it doesn’t have
an error. Numerically from (136) and (136.8) :

    ½
  (0.0017)²    (0.00080)²

          ∆MUn / MUn ≈    +       ;
 (13.8314)²    (6.67384)²

          ∆MUn / MUn ≈ 0.00017; ( 147.1 )

thus it can be written

MUn = ( 4.40541 ± 0.00017 · 4,40541 ) · 1052 · kg ;

MUn = ( 4.40541 ± 0.00075 ) · 1052 · kg ;

it also makes sense to round this as follows:

MUn = 4.40541(75) · 1052 · kg ; ( 130.4 )

in relationship to the proton rest mass from (139), this results numerically in

 MUn      4.40541  · 1052 · kg
  ≈   ;
 mp   1.672621777 · 10−27 kg

     MUn / mp ≈ 2.63384 · 1079 ; ( 130.5 )

the author finds it irritating that this value corresponds to rough estimates of the proton
number in the universe. But since the PSOP mission14 it is known that the universe
contains approximately 4.82±0.05% ordinary baryonic matter, 25.8±0.4% dark matter and
69±1% dark energy.14,15,16 Since the latter presumably shouldn’t be counted to MUn , quite
contrary to dark matter, the actual proton number Np cannot possibly be as big as the
value shown in equation (130.5).

So it’s crucial to undertake further investigations concerning Np .
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The number of protons in the biggest possible test set, if it is solely defined by protons as
its elements, is equal to (2M −1); that’s the result of previous considerations. At M =1 as
well as at M = 2 the elements of the test set are inexistent for each other, as was already
deduced earlier.

At M ≥ 3 it’s likely to be different, because under these conditions, σM≥3 might presumably
be even considerably bigger than the Planck time − and that leads to an interesting
thought the author would like to present now.

The reader should try to imagine a universe solely containing the (2M −1) protons in the
biggest possible test set; in other words, aside from the test set, such a world would be
empty (wow! That’s really solipsistic!). Now, the following phenomenon may occur: Each
of these protons would establish a connection to every other proton by exchanging a
photon. This interchange could be realised in two different ways; either, the photon sent
by one proton would be coupled by the target, or, the photon wouldn’t couple with the
other proton. The probability with which the photon couples with the target proton is
described by the electromagnetic coupling constant α, the Sommerfeld fine structure
constant.17 In a simplified view, this means that only in approximately one of 137 such
encounters the photon is „sucked in“ by the proton.

This description isn’t really in accordance with the facts, because, more precisely put, the
photon doesn’t interact with the proton, but the photon field with the atom containing the
proton; after all, the photon is only an energy quantum that is exchanged. But here, in
order to achieve better clarity, the issue is dumbed down a bit (especially the electron in
the hydrogen atom is neglected; in this example, the test set is defined solely by protons
and not hydrogen atoms).

The quantity of those exchanges may be expressed by the following term:

(2M −1) · (2M −1) · α

because there are (2M −1) protons in the biggest possible test set, and each of them
receives a photon from all others, (2M −1) photons are exchanged. In nowadays universe
that leads in one of approximately 137 cases to a successful coupling.

Now it has yet to be taken into consideration that only a single such exchange process
may occur per Planck time, though with the probability 1 (because α1=1), but always only
in one of three different ways − the reader may recall that at M =1, the test particle is
defined by its three elements called epsilons, and the photon exchange takes always
place with one of the elements and not with the proton as a whole. (as depicted at the end
of chapter I., in the first place, a photon exchange between the antiproton and the positron
is responsible for the creation of the proton and its electron; that applies also the other
way round). For consistency reasons the above term has to be divided by three:

(2M −1) · (2M −1) · α
           .

     3
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This term will be called NM :

(2M −1) · (2M −1) · α
          NM :=   ; ( 148 )

     3

for M »1 the result is

4 · M² · α
NM =   ; ( 148.1 )

      3

on the other hand, squaring (115.6) results in

k* · MUn

       4 M² =       ;
    mp

by substituting k* :=  k / α that yields

 k · MUn

       4 M² =       ; ( 115.9 )
 α · mp

and because for M »1 the value k ≈ 2.9925037602 has been calculated, (115.9) may be
written as follows:

 2.9925037602 · MUn

       4 M² ≈       ; ( 115.10 )
 α · mp

or    4 M² · α
        MUn ≈    · mp ; ( 115.11 )

        2.9925037602

with (148.1)
        3

        MUn ≈   · NM · mp ; ( 115.12 )
        2.9925037602

        MUn ≈ 1.0025050060 · NM · mp ;

thus the conceptual approach depicted above confirms the basic principle that k lies very
close to 3.
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Because NM is nothing else than the total amount of all protons in the universe, i.e. Np , it
seems that 2.5 per mill of the universal mass never and under no circumstances may
consist of protons. The reciprocal value of ß≈1,836.15267245 is equal to more or less
0.000544617. That’s the mass fraction to be allotted to all electrons in the universe, if their
amount equals that of the protons. Now the difference between those 2.5 per mill of the
universal mass and this last−mentioned number is approximately equal to 0.001960389.
That’s about a fivehundredth of the total proton mass in the universe. The author thinks
that this could be the mass fraction that has to be allotted to the neutrinos moving at
relativistic speed, thus being nearly massless because of their negative total energy; yet,
their overwhelming number is sufficient to account for about two per mill of the total mass
of all protons in the universe.

Back to the result of the conceptual approach depicted above. Bewildered, the attentive
reader will now ask himself if there are really no other protons (i.e. hydrogen atoms) than
those included in the biggest possible test set, because the overwhelming majority of the
protons in the universe would only be a kind of „echo“ of those protons being elements of
that biggest possible test set!

Asked to solve this riddle most readers will find difficult to accept, the author loconically
points to one of the basic assumptions of this paper, i.e. the one stating that the world is a
subset of the power set of the test set.

What is still left to be done is to calculate the present−day image number M as accurately
as possible. Starting with (115.9), one gets

         ½
   k · MUn

M =          ; ( 115.13 )
 4 · α · mp

numerically:
     ½

         2.9925037602 · 4.40541 · 1052

M ≈         ; ( 115.14 )
         4 ·7.29735256980 ·10−3·1.672621777·10−27

M ≈ 5.196357 · 1040 ; ( 115.15 )

and here’s the respective error estimate:
  ½

   ∆M       ½·(∆k)²     ½·(∆MUn)² ½·(∆α)²     ½·(∆mp)²
    =    +  +  +       ;
    M          k²     MUn²     α² mp²

with the values of k, MUn , α and mp [see equations (130.4) and (141.8) as well as
appendix A] :

  ½
     ∆M        0.0000000008²        0.00025²        0.0000000024²       0.000000074 ²
      ≈   +  +  +    ;
      M       2·2.9925037602²     2·4.40541²     2·7.2973525698²     2·1.672621777²
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   ∆M
    ≈ 0.00004 ;
    M

with (115.15) that yields

    ∆M ≈ 0.00004 · 5.196357 · 1040 ;

    ∆M ≈ 0.0002 · 1040 ;

=>       M = (5.1964 ± 0.0002) · 1040 ; ( 115.16 )

better readable as follows:      M = 5.1964(2) · 1040 ; ( 115.17 )

this result differs by  ∆M = (5.1964−5.1885) ·1040 = 0.0079 ·1040 from equation’s (135.5)
result. => ∆M / M =  0.0079 / 5.1964 = 0.0015; that’s a lot less than the relative error of M
based on the Planck mission15 results.

Here’s the error estimate for equation (135.5) :
 ½

     ∆M       [∆(∆X)]²    (∆mp)²      (∆h)²   (∆k)²
      ≈   +  +  +     ;
      M         (∆X)²      mp² h ²     k ²

  ½
     ∆M        0.037²       0.000000074²       0.000000047²      0.0000000008²
      ≈   +  +  +     ;
      M       13.798²     1.672621777²  1.054571726²      2.9925037602²

     ∆M
      ≈ 0.0027;
      M

with (135.5) :

        M = ( 5.1885 ± 5.1885 · 0.0027 ) · 1040 ;

        M = ( 5.1885 ± 0.014 ) · 1040 ; ( 135.13 )

and if one compares that with the result in equation (135.15)

        M = (5.1964 ± 0.0002) · 1040,

than it becomes instantly obvious that the latter lies well inside the error boundaries of
(135.17), and above all, it’s much more accurate.

Back to the topic of dark matter.
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It was shown in chapter II. that neutrinos have negative binding energy. Each of them can
form with baryons something like analogons of atoms, quite comparable to normal atoms
consisting of protons and neutrons in the atomic nucleus and electrons in the shell. The
only difference is that there is no electromagnetic interaction between the neutrino and the
baryon (or rather the atomic nucleus); between them there is, apart of a possible weak
interaction, solely gravitational attraction, which in the case of hydrogen atoms is
approximately 1039 times weaker than the electromagnetic attraction between proton and
electron, and that makes these analogons of atoms many times taller than known atoms.
By rough estimates of the author, a neutrino on an orbit corresponding to the Bohr radius
is 1020 times farther away from the proton than an electron in a similar situation.

That provides a plausible explanation for the behaviour of neutrinos, which would
otherwise seem fairly queer; them moving extremely fast, nearly with the speed of light,
but having an incredibly small mass. This cosmological model simply states that the
negative binding energy of the neutrinos has nearly the same absolute value as their rest
mass, in case their main quantum number n≈1; because of the validity of the virial
equation the kinetic energy is nearly as big as the rest mass of a neutrino at n≈1.

Thus, plausible explanations are supplied for sundry unsolved riddles in nowadays
physics. The most prominent of them is dark matter; the latter might mainly consist of
decelerated neutrinos. Those could be generated if neutrinos are attracted by baryonic
matter, thus accumulating in its vicinity. Neutrinos, having half−integral spin, are subject to
the Pauli principle18, and that leads to the fact that they have to adopt higher and higher
energy states, the more of them are concentrated in a confined region of space. As it is
the case concerning electrons, neutrinos also may at most occupy their respective orbitals
in pairs; if such an orbital is „full“, the next neutrino has to jump on a higher orbital. That
leads to the situation that huge amounts of slow and high−energy neutrinos accrete in the
vicinity of major matter aggregations, and it becomes obvious why those clouds of dark
matter do not simply sink into stars or other celestial bodies, because gravitation would
normally suck them in; the Pauli principle stands against it.

The graviton is the analogon of the photon; a neutrino coupling a suitable graviton
increases its main quantum number accordingly. Of course that applies also to the proton,
but the neutrino is the feeblest partner in that couple; in this analogon of an atom the
mass difference is so huge that, raising the main quantum number by one, greatly
increases the radius of the neutrino orbit, while that of the proton nearly stays unchanged.
The consequence of this and the Pauli exclusion principle is that the neutrino is pushed
out of the baryonic matter accumulation, while the proton is sinking in.

Another phenomenon easy to explain with this model is the supernova.

An ordinary nova occurs if the respective star is beginning to burn the iron which was
created and accumulated by previous fusion processes in its core. Because the fusion of
iron to heavier elements is an endothermic reaction, the star looses energy. The radiation
pressure which previously opposed itself to the gravitational pull of the stars mass
becomes gradually weaker, so that in consequence, the star collapses temporarily, only to
become a nova afterwards, as soon as a certain pressure maximum is reached in its core.

The supernova shows a comparable behaviour, only on a larger scale, but for its
explosion, neutrinos are responsible in the first place.
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Just before exploding as a supernova the extremely high density of matter in the core of
the star increases, thus neutrinos are gradually slowed down on their journey through it.
It’s often quoted that a neutrino is able to cross more than 3,000 light−years of lead with a
probability of 50 percent. But in the core of extremely massive stars which eventually
become supernovae, matter is very dense, exceeding the density of lead by many orders
of magnitude, hence even neutrinos are noteworthy slowed down by it. In extreme cases
this process leads to neutrinos reaching their rest energy, which is very much bigger than
their mass energy compensated by the negative binding energy in the atom analogons;
the authors first estimates hypothesise a neutrino rest mass about 500 to 2,000 times
smaller than that of the electron. This slowing down of the neutrinos and the associated
raise of neutrino mass energy sucks lots of kinetic energy from the particles in the stars
core, hence, comparable to the processes in a nova, gravitational pull wins and causes
the star to collapse, and in this case that’s happening much more violently than in a nova,
in the first place because stars able to become supernovae have a much bigger mass.

Back to equation (115.12). NM or rather Np , the total number of protons in the universe, if
its whole mass consists of baryonic matter (the electron mass is neglected here, because
nowadays, it is approximately 1,836 times smaller than the proton mass), is only valid in
this form in the case of an ideal Eddington uranoid. In the real world and right from the
start, hydrogen atoms were never evenly distributed throughout the universe. Matter was
accumulating in vast regions of space during universal expansion, having consequences
for the neutrinos included in this model, as it was already depicted above. So neutrinos
were and are still slowed down by the physical effects explained earlier, what leads to the
fact that a considerable fraction of mass in the universe turns up as dark matter.

In its present version, this model isn’t able to theoretically explain the partitioning of
baryonic and dark matter.

At the most the model may be able to bring forward some general statements to the topic
of dark energy, but the author wants to leave the necessary calculations to others. He
himself is simply much too laizy. After all, he’s a cab driver...

If one looks at the universal mass creation rate CUn , it’s obviously not significantly smaller
today than at M ≈1. Without perfoming a more thorough derivation here, the author refers
to the fact that according to equation (96.5) the universal mass increased by 75% from
M =1 to M = 2, what corresponds to three Planck masses, while seemingly 9 translative
Planck times elapsed, thus expanding the distance between the test particle and the
horizon from 1 (at M =1) to 10 Planck lengths. CUn1 equals approximately 1/3 c³/G ≈
1.3·1035 kg/s, while, according to equations (130.4) und (140) combined with cTUn ≈ 2·∆X,
the universal mass MUn in relation to the age of the universe, TUn , is nearly exactly equal
to 1035 kg/s, what allows the deduction that nowadays, the mass creation rate is about
30% smaller than immediately after the Big Bang. The assumption seems likely that this
trend finds its continuation in the future. Anyway, the density of matter in the universe in
this model lies distinctly above the critical boundary19 of 5·10−27 kg/m³, thus with (130.2)
approximately at

          MUn      ½ ∆X c² / G
           ≈    , ( 149 )
          VUn   2 π² (2·∆X / π)³
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where VUn is the 3−surface of a 4−sphere with a radius of curvature R =  2·∆X / π . The
author assumes a hypersphere as uranoid, quite as Eddington did it before.

With (149) that yields
          MUn       c² / G
           ≈    ;
          VUn   32 (∆X)² / π

what results in

          MUn    π·c² / G
           ≈    ;
          VUn   32 (∆X)²

numerically with (136), (140) and c = 2.99792458 ·108 m/s as well as π≈ 3.141592654,
that results in

          MUn

           ≈ 3.10359 · 10−26 kg / m³ ; ( 149.1 )
          VUn

this value lies distinctly above the already mentioned density boundary of 5·10−27 kg/m³,
what means according to Einstein that the universe will collapse again after the expansion
era.19

Because equation (149) comes along with the assumption that the universe is a 3−surface
of a 4−sphere, whose radius of curvature is R =  2·∆X / π , this model is at odds with
cosmic inflation. But on a large scale, the universe is apparently „flat“; apart from regions
with bigger mass conglomerations, spatial curvature doesn’t show up. Inflationary models
explain this fact by postulating an universal extent vastly beyond the horizon, so that the
„small“ region inside the horizon seems to be unbent. But that is in complete contradiction
to the basic assumptions of the cosmological model presented in this paper.

What does the author bring forward in order to explain the obvious lack of evidence for
spacial curvature?

For that purpose the reader may redirect his attention to fig. 2 in chapter I.

There, a lower−dimensional image of the universal hypersphere is shown. One can easily
see that the points A and B which lie on the equator of the 3−sphere (i.e. its lower−
dimensional replica), representing two test particles elements mutually inexistent, are
connected to point C by two lines enclosing a right angle. The isosceles triangle which lies
in the surface of the sphere has an angular sum of 270°,  quite in contrast to a normal
triangle in an unbent surface with an angular sum of 180°.

The curvature of the sphere is irrelevant for the elements of the test set represented by
the points A and B; it’s simply not observable for them. Not before considering, that „seen“
from the points B and C the connecting lines B−A and C−A enclose an angle of 90°, as
well as „seen“ from the points A and C, the connecting lines A−B and C−B form also a
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right angle, it becomes obvious that this can only work if the surface of the lower−
dimensional image is bent.

All that doesn’t only apply to an universe at M =1, but is also valid for all others. In order to
detect the curvature of spacetime one would need to send a spacecraft very far away
from the solar system, so that aside from local perturbations, the curvature of the whole
universe would become relevant; this probe should then perform angular measurements
related to very distant objects, which afterwards would have to be compared with
equivalent measurements on earth. That’s simply not realisable.

However, spacial curvature causes another phenomenon. On the 3−sphere in fig. 1 the
distance between the points A, B and C is equal. But if the surface is unbent, the distance
between A and B is √2 times the distance between A and C as well as B and C according
to Pythagoras, and that’s nearly one and a half times more. Hence, for the test particle
which is defined by the elements A and B, the extent of an object C (if it isn’t merely a
mathematical dot) seems to be larger than in C’s own present.

And that is absolutely compatible with the assertions in this model. For example a proton,
which nowadays has a radius rp , as seen from a distance of, let’s say, 6.9 billion light−
years, i.e. more or less half−way to the universal horizon, has in its own present a radius
which is about √2 times smaller. And that doesn’t only apply to the proton, but also to
everything else, for example its Compton wavelength. And if the latter is that much
smaller, than the protons rest energy has to be that much bigger!

The reason for all this is based on the authors postulate that the test set is the measure of
all things. The proton hovering there in a distance of 6.9 billion light−years is a particle
defined by elements of the test set. These elements always have the same properties
they also have in the current test set; everything seen by a contemporary observer in
distant cosmic realms must therefore show all attributes of nowadays matter. If by use of
some hypothetical time machine one would have a look at the world as it presented itself
to a test particle lying at the universal equator as seen from the present, one would
measure a proton radius equal to rp/√2, and the proton rest mass would be √2 times
bigger than today; the distance between the test particle and the universal antipole would
also be smaller by this factor √2, and the universe itself would be √2 times younger.

The more one would approach the universal horizon, the more extreme this effect would
be. The author didn’t check that until now, but he suspects that the inflation assumed
immediately after the Big Bang by so many cosmologists could be explained by the effect
depicted above; though the universal expansion never took place with superluminal
velocity, a nowadays observer gets such an impression, simply because at the beginning,
the universe seemed to expand extremely fast, until it seemed to have reached a
considerable extent after an extremely short time − which, seen from an hypothetical
observer at that time, would correspond to the most minute distances and a very young
universe. The gravitational waves detected by BICEP 20 are also predicted by the authors
model; after the initial state of the universe, as the matter/energy density gradually
decreased while translative time went by, it must have happened that the neutrinos which
at that time were much more massive than today jumped down from higher orbitals of the
atom analogons on lower ones, formerly blocked by the already described Pauli principle,
thus emitting high−energy gravitons, i.e. gravitational waves.
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And now some last remarks concerning the image number M.

The quantum state defined by M is not that of the universe, what would be complete
nonsense in the eyes of the author. But it is a quantum state of the test set.

And alike all decent atoms the latter also tends to reach a low−energy state. If M is a
number around 1040, what corresponds to its nowadays value, nothing is to be said
against it that the test set is able to instantly change from this state to the lowest−energy
ground state, i.e. at M =1. „Instantly“ doesn’t have to do anything with translative time, it’s
happening in a kind of meta time. Translative time is only an effect giving the subject
having chosen a specific test set the impression of time going by, while the subject
actually chooses a sequence of test sets according to an appropriate algorithm with a
steadily increasing image number M. The subject could also choose something else, for
example a sequence of states in cyclic time.

Something else is notable, concerning the cosmological model presented here; the
striking relationship to the periodic table of the elements. While at M =1 only hydrogen
atoms may exist, at M = 2 also deuterium is realisable as a test set. A D atom contains a
proton and a neutron. The proton has a down quark, the neutron even two of them. And
each down quark has an anti−T rishon as an element, while three of them are needed to
form an electron. Thus a deuterium nucleus is an absolutely sufficient test set at M = 2;
aside from it there would also exist one electron, eleven neutrinos / antineutrinos
(because one neutrino is necessary to generate the neutron in the deuterium nucleus)
and one electron−positron pair, or an equivalent amount of photons in the remaining
universe. This makes it obvious that starting with M = 2 even small amounts of antimatter
may be created, but they cannot stay in existence for long, because collisions with matter
occur much too frequently.

Tritium is not yet realisable at M = 2, because there are five anti−T rishons in its nucleus,
what implies at least an image number of 3. This applies also to helium−3, because four
anti−T rishons reside in its nucleus.
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Conclusion

The cosmological model presented here leads to results corresponding to observed
values confined by tolerable error margins, if an approach based on simple set theory is
used, as it was depicted in chapter I. Hence the world cannot only be described with the
help of mathematical methods, but it is itself a mathematical structure, and that’s a
straightforward explanation for the fact that it obeys mathematical rules.

The author doesn’t entertain the slightest doubt about the fact that most readers of this
paper have difficulties with the notion that the world is composed of elements of a test set,
and it can be read between the lines that this test set corresponds to the spirit or rather
the consciousness of an observer (the so−called "subject"), although this wasn’t yet
explicitly claimed in this paper. In other words, the observer structures himself and with it
the test set; he chooses, whether knowingly or unconsciously, and thus influences the
structure of the universe in an essential extent, because the very fabric of the world
depends on the structure of the test set.

It cannot be dismissed that such an approach is not only extremely relevant in physical,
but also in metaphysical respect, if it matches reality, as the results well within the fault
tolerances suggest in chapter III. Even theologically significant consequences arise,
whose discussion would surely go well beyond the scope of this paper.

It shall only be mentioned here in this context that the model leans on Plato’s Cave
Allegory; the power set of the test set definitely has some resemblance to Plato’s world of
ideas.21
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Appendix A: Values of Fundamental Physical Constants

Gravitational constant G = 6.67384(80) · 10−11 · kg−1 · m³ · s−2 ;

Velocity of light in a vacuum c = 2.99792458 · 108 m/s ;

Planck’s constant / 2π h = 1.054571726(47) · 10−34 · kg · m² · s−1 ;

Elementary electric charge e*= 1.518906630(33) · 10−14 · kg½ · m3/² · s−1;

Proton rest mass          mp = 1.672621777(74) · 10−27 kg ;

Neutron rest mass          mn = 1.674927351(74) · 10−27 kg ;

Electron rest mass          me = 9.10938291(40) · 10−31 kg ;

Sommerfeld fine structure constant α = 7.2973525698(24) ·  10−3 ;

Ratio of proton to electron rest mass ß = 1,836.15267245(75) ;

Ratio of electrical to gravitational attraction in the Bohr model of the hydrogen atom

γ = 2.26881(25) · 1039 ;

Planck mass         Mp = 2.17650(17) · 10−8 kg ;

Planck length         Rp = 1.61620(1) · 10−35 m ;

Planck time         Tp = 1.70480(1) · 10−43 s ;

Appendix B: Conversion Factors Between Units

1 C = 9.48026993 · 104 · kg½ · m3/² · s−1 ;

1 A = 9.48026993 · 104 · kg½ · m3/² · s−2 ;

1 V = 1.05482229 · 10−5 · kg½ · m½ · s−1 ;

1 Ly = 9.4604715 · 1015 m ;

1 a  = 31,556,736 s .
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Appendix C: Key to Special Terminology

Color: An attribute of epsilons and in consequence of all particles not built of equal
amounts of them colored ’red’, ’green’ and ’blue’ each. Of all those, the
particles called ’quarks’ are the best−known.

Cyclic: An adjective to characterise a time dimension perpendicular to the time
dimension (normally?) perceived by humans which is called ’translative’ in
this paper.

Epsilon: The most fundamental (and ’smallest’) particle in this universe. Depending
on the ’image number’ M, it carries (and is defined by) a specific electric
charge, it moves with a specific velocity and has a specific mass. It may only
move into one of three possible directions, and this attribute is called ’color’.
Epsilons lack inner structure, hence they may be handled as Black Holes. As
translative time goes by, they are getting smaller and smaller.

Image: The subject’s quantum state. It is characterised by an ’image number’ M, the
latter obviously becoming bigger and bigger while translative time goes by.
M stays constant if only cyclic time elapses.

Mixed: An adjective used to describe particles themselves built of a mixture of uni−
and varicolored particles.

Object: An observed event. The set−theoretical approach is that an object is an
element of a subject. ’Positive’ objects correspond to observations,
’negative’ objects are so−called ’non−observations’.

Rishon: Fundamental particle proposed by Haim Harari.10 Here in this paper, a rishon
always consists of pairs of epsilons and is thus colored.

Subject: A perceiving observer. Here in this paper, the approach is that a subject is a
set defined by its elements called ’objects’. A subject is at rest by definition.

Test set: A set chosen by the subject by adapting his structure to that of the test set.
It has to be congruent with the subject’s structure (or perhaps with a part
of it). The smallest possible test set is a particle, also called ’test particle’, 
which in this universe is a proton.

Translative: Here, in this paper, ’translative’ is an adjective used to characterise the time
dimension (normally?) perceived by humans.

Unicolored: Particles consisting of epsilons all having the same color.

Uranoid: Model of the world in which uniformly distributed particles exist (i.e. protons
and electrons) whose temperature is 0° Kelvin, so that al l particles are at rest
relative to each other.
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Varicolored: Particles consisting of epsilons having different colors.

World: A set defined by elements which are subsets of the subject, and therefore
at least a subset of the power set of the subject.
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 e*²
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 2rp
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